Effect of Humic Acid and Foliar Application of Potassium on Growth and Yield of Melon
Abstract views: 345 / PDF downloads: 351
DOI:
https://doi.org/10.5281/zenodo.7364656Keywords:
Humic acid, Melon, Potassium, Growth, YieldAbstract
The increased use of chemical fertilizers as a sole input for production of horticultural crops has destructed the soil architecture and suppressed product quality. Therefore, a field experiment was implemented in the vegetable research field of research center Duhok province / Iraq at the summer growing season of 2019 to inspect the impact of soil drenching of humic acid at four levels (0, 500, 1000, and 2000 mg l-1) and foliar spraying of potassium at four levels (0, 0.3, 0.6, and 0.9 mg l-1) and their interactions on the growth and yield of melon. Both humic acid and potassium fertilizer increased the phosphorus (P) content significantly compared to the control. The results obtained from hot climatic condition displayed also no significant amelioration in vegetative traits [canopy height, leaf area, chlorophyll content (SPAD), and stem diameter] and yield traits [number of fruits per plant and total yield ] with soil drench application of humic acid and foliar feeding of potassium fertilizer as compared to control.
References
AOAC, (1970). Official Method of Analysis 11th edition Washington D.C.
AOAC, (1980). Official Method of Analysis 13th edition Washington D.C.
Abd El-Baky M. M. H., Abd El-Rheem, K. M., El-Azab, M. E., Kassem, A. S., (2018). Response of growth, yield and nutritional status of cucumber plants (Cucumis sativus L.) to different foliar application of humic acid and naphthalene acetic acid. Middle East J. Appl. Sci, 8(2): 594-598.
Abd-Elaziz. S., Alkharpotly, A. A., Yousry, M. M., Abido, A. I. A., (2019). Effect of foliar application of salicylic acid and potassium silicate on squash plants (Cucurbita pepo L.) yield and quality. Fayoum J. Agric. Res. And Development, 33(1): 1-29.
Al-Moshileh, A. M., Errebhi, M. A., & Obiadalla-Ali, H. A. (2017). Effect of potassium fertilization on tomato and cucumber plants under greenhouse conditions. Bioscience Research, 14(1), 68-74.
Al-Sahaf, F. H., (1989). Practical Plant Nutrition. Ministry of Higher Education and Scientific Research. Bagdad Univ. Iraq. (In arabic).
Black, C. A. (1965). Method of soil analysis part 2. Chemical and microbiological properties, 9, 1387-1388.
Bouzo, C. A., Céccoli, G., & Muñoz, F. (2018). Effect of potassium and calcium upon the yield and fruit quality of Cucumis melo. AgriScientia, 35(1), 25-33.
Caesar-TonThat, T., Lenssen, A. W., Caesar, A. J., Sainju, U. M., & Gaskin, J. F. (2010). Effects of tillage on microbial populations associated to soil aggregation in dryland spring wheat system. European Journal of Soil Biology, 46(2), 119-127.
Cameron, K. C. (1986). Retention and movement of nitrogen in soils. In ‘Mineral nitrogen in the plant–soil system’.(Ed. RJ Haynes) pp. 166–241.
Dunsin, O., Aboyeji, C. M., Adekiya, A. O., Adegbite, K. A., Adebiyi, O. T. V., Bello, R. O., ... & Dunsin, D. M. F. (2019). Growth, yield, fruit mineral and Vitamin C content of Cucurbita pepo. L as affected by Organic and NPK fertilizer. Open Agriculture, 4(1), 795-802.
Erdinc, C., İnal, B., Erez, E., Ekincialp, A., & Sensoy, S. (2021). Comparative Adaptation Responses of Melon (Cucumis melo L.) Genotypes to Salinity Stress. Journal of Agricultural Science and Technology, 23(2), 403-418.
Benyamin Esho, K., & Saeed, S. H. (2017). Effect of humic acid on growth and yield of three cultivars of summer squash (Cucurbita pepo L.). Egypt. J. Exp. Biol.(Bot.), 13(2), 167-171.
Fereres, E., & Soriano, M. A. (2007). Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany, 58(2), 147-159.
Fleisher, D. H., Timlin, D. J., & Reddy, V. R. (2008). Interactive effects of carbon dioxide and water stress on potato canopy growth and development. Agronomy Journal, 100(3), 711-719.
Flexas, J., Briantais, J. M., Cerovic, Z., Medrano, H., & Moya, I. (2000). Steady-state and maximum chlorophyll fluorescence responses to water stress in grapevine leaves: a new remote sensing system. Remote Sensing of Environment, 73(3), 283-297.
Hatipoğlu, M., & Şensoy, S. 2022. Validity Determination of Some Molecular Markers Used in Melon Breeding. Yuzuncu Yıl University Journal of Agricultural Sciences, 32(2), 424-435.
Havlin, J. L., Beaton, J. D., Tisdale, S. M., & Nelson, W. L. (1999). Soil Fertility and Fertilizers 6 th. Colition. Perintice. Hall. New Jersey.
Jefferies, R. A. (1995). Physiology of crop response to drought. In Potato ecology and modelling of crops under conditions limiting growth (pp. 61-74). Springer, Dordrecht.
John, M. K. (1970). Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Science, 109(4), 214-220.
Kadu, J. B., Kasture, M. C., Tapkeer, P. B., Dhopavkar, R. V., & Annapurna, M. V. V. I. (2018). Effect of soil application of potassium and foliar spray of zinc and boron on yield, yield contributing character and quality of watermelon [Citrullus lanatus Thunb.)] in lateritic soils of Konkan. Int. J. Chem. Stud, 6, 7-12.
Kandil, A. A., Sharief, A. E., Seadh, S. E., & Altai, D. S. (2017). Physiological role of humic acid, amino acids and nitrogen fertilizer on growth of wheat under reclaimed sandy soil. International Journal of Environment, Agriculture and Biotechnology, 2(2), 238724.
Khan, R. U., Khan, M. Z., Khan, A., Saba, S., Hussain, F., & Jan, I. U. (2018). Effect of humic acid on growth and crop nutrient status of wheat on two different soils. Journal of Plant Nutrition, 41(4), 453-460.
Merghany, M. M., Ahmed, Y. M., & El-Tawashy, M. K. F. (2015). Response of some melon cultivars to potassium fertilization rate and its effect on productivity and fruit quality under desert conditions. Journal of Plant Production, 6(10), 1609-1618.
Mohamed, M. H. M., & Ali, M. M. E. (2016). Effect of some organic and bio fertilization treatments in presence of chemical fertilization on growth, chemical composition and productivity of cantaloupe plants. Humic Acid, 6(7), 8.
Selim, E. M., Shedeed, S. I., Asaad, F. F., & El-Neklawy, A. S. (2012). Interactive effects of humic acid and water stress on chlorophyll and mineral nutrient contents of potato plants. Journal of Applied Sciences Research, 8(1): 531-537.
Selladurai, R., & Purakayastha, T. J. (2016). Effect of humic acid multinutrient fertilizers on yield and nutrient use efficiency of potato. Journal of Plant Nutrition, 39(7), 949-956.
Sensoy, S., Ocak, E., Demir, S., & Tufenkci, S. (2013). Effects of humic acid, whey and arbuscular mycorrhizal fungi (AMF) applications on seedling growth and Fusarium wilt in zucchini (Cucurbita pepo L.). Journal of Animal and Plant Sciences, 23(2) 507-513.
Shafeek, M. R., Shaheen, A. M., Abd El-Samad, E. H., Rizk, F. A., & Abd El-Al, F. S. (2015). Response of growth, yield and fruit quality of cantaloupe plants (Cucumis melo L.) to organic and mineral fertilization. Middle East Journal of Applied Sciences, 5(1), 76-82.
Suman, S., Spehia, R. S., & Sharma, V. (2017). Humic acid improved efficiency of fertigation and productivity of tomato. Journal of Plant Nutrition, 40(3), 439-446.
Tamer, C. E., Incedayi, B., Yönel, S. P., Yonak, S., & Copur, O. U. (2010). Evaluation of several quality criteria of low calorie pumpkin dessert. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), 76-80.
Turner, N. C. (1996). Further progress in crop water relations. Advances in Agronomy, 58, 293-338.
Vollenweider, P., & Günthardt-Goerg, M. S. (2005). Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environmental Pollution, 137(3), 455-465.
Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1), 1-14.
Wild, A. (1988). Plant nutrients in soil: phosphate. Russell's Soil Conditions and Plant Growth. Eleventh edition, 695-742.
Zareian, A., Abad, H. H. S., Hamidi, A., Mohammadi, G. N., & Tabatabaei, S. A. (2013). Effect of drought stress and potassium foliar application on some physiological indices of three wheat (Triticum aestivum L.) cultivars. Annals of Biological Research, 4(5), 71-74.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.