Kobalt Oksit Nanopartikülünün Sıçan Kemik İliğinde Genotoksisitesi: Tek Hücre Jel Elektroforezi-Mikronukleus Test


Özet Görüntüleme: 12 / PDF İndirme: 5

Yazarlar

DOI:

https://doi.org/10.5281/zenodo.14599800

Anahtar Kelimeler:

kobalt oksit nanopartikül, kemik iliği, polikromatik eritrosit, komet asay, mikronukleus

Özet

Nanopartiküller fiziko-kimyasal özellikleri nedeniyle farklı şekillerde sentezlenebilir ve endüstride farklı alanlarda kullanılabilir. Bu çalışmada, erişkin erkek Wistar sıçanları günlük olarak vücut ağırlığına göre 1, 5, 10 ve 50 mg/kg dozlarda CoONP (≤50 nm nanopul) ile gavaj uygulamasıyla 28 gün boyunca maruz bırakıldı. Bu çalışmada genotoksisite, sıçan kemik iliğinde tek hücre jel elektroforezi (COMET) ve mikronükleus (MN) test sistemleri kullanılarak test edildi. CoONP tedavisi önemli ölçüde mikronükleus sıklığını ve DNA hasarını artırdı (p<0.05). Polikromatik eritrositlerin normokromatik eritrositlere oranındaki azalma önemli derecede belirgindi (p<0.05). Bu bulgular, CoONP maruziyetinin potansiyel sağlık etkilerini anlamak için önemli sonuçlar taşımaktadır.

Referanslar

Abdelsalama, N,R,, et al. 2018. Genotoxicity effects of silver nanoparticles on wheat (Triticum aestivum L.) root tip cells. Ecotox Environ Safe. 155, 76-85.

Agarwal, D.K., Chauhan, L.K.S. 1993. An improved chemical substitute for fetal calf serum for the micronucleus test. Biotech Histochem, 68, 187-188,.

Alarifi, S., et al. 2013. Oxidative stress contributes to cobalt oxide nanoparticles-induced cytotoxicity and DNA damage in human hepatocarcinoma cells. Int. J. Nanomedicine 8, 189–199.

Antonoglou, O., et al. 2019. Biological relevance of CuFeO2 nanoparticles: Antibacterial and antiinflammatory activity, genotoxicity, DNA and protein interactions. Mat. Sci. Eng. 99: 264-274.

Anwar, A, et al. 2019. Effects of Shape and Size of Cobalt Phosphate Nanoparticles against Acanthamoeba castellanii. Pathogens 8, 260.

Arora, S., Rajwade, J.M. & Paknikar, K.M. 2012. Nanotoxicology and in vitro studies: the need of the hour. Toxicol. Appl. Pharmacol. 2012; 258(2): 151-165.

Assadian, E., et al. 2018. Toxicity of copper oxide (CuO) nanoparticles on human blood lymphocytes. Biol. Trace Elem. Res., 184: 350- 357.

Atalay, H., Çelik, A., and Ayaz, F. 2018. Investigation of genotoxic and apoptotic effects of zirconium oxide nanoparticles (20 nm) on L929 mouse fibroblast cell line. Chem. Biol. Interact. 296, 98–104.

Auffan M, et al.2009. CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. Nanotoxicology; 3: 161e71.

Balram, A., and Zhang, H. 2017. Enhanced oxygen evolution reaction electrocatalysis via electrodeposited amorphous α-phase nickel-cobalt hydroxide nanodendrite forests. ACS Appl. Mater. Interfaces 9, 28355–28365.

Barillet, S, et al. 2010. In vitro evaluation of SiC nanoparticles impact on A549 pulmonary cells: cyto-, genotoxicity and oxidative stress. Toxicol.Lett. 198(3): 324-330.

Battal, D., et al. 2015. SiO2 Nanoparticule-induced size-dependent genotoxicity- an in vitro study using sister chromatid exchange, micronucleus and comet assay. Drug Chem. Toxicol. 38(2):196-204.

Bellani, L.L., et al. 2020. Genotoxicity of the food additive E171, titanium dioxide, in the plants Lens culinaris L. and Allium cepa. Mutat. Res. Gen. Tox. Env. Mut. 849, 503142.

Brooking, J., Davis, S.S., Illum., L. 2001. Transport of nanoparticles across the rat nasal mucosa, J. Drug Target 9: 267–279.

Carmona, E.R., Escobar, B., Marcos, R. 2015. Genotoxic testing of titanium dioxide anatase nanoparticles using the wing-spot test and the comet assay in Drosophila. Mutat. Res. Genet. Toxicol Environ. Mutagen. 778: 12-21.

Cavallo, D., and Ciervo, A. 2014. Investigation of CoO nanoparticles cyto-genotoxicity and inflammatory response in two types of respiratory cells. J. App. Tox. 1102-1113.

Chattopadhyay, S., et al. 2015. Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study. Chemico-Biological Interactions, 226, 58-71.

Collins A, et al. 1997. Comet assay in human biomonitoring studies: reliability, validation, and applications. Environ and Mol. Mutagen. 30(2): 139-146.

Colognato, R., et al. 2008. Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro. Mutagenesis, 23(5): 377-382.

Coreman Berman, S.M., et al.2013. Cell motility of neural stem cells is reduced after SPIO-labeling, which is mitigated after exocytosis. Magn. Reson. Med. 69: 255–262.

Çavaş, T. 2011. In vivo genotoxicity evaluation of atrazine and atrazine-based herbicide on fish Carassius auratus using the micronucleus test and the comet assay. Food Chem. Toxicol 49: 1431-1435.

Çelik, A., and Kanık, A. 2006. Genotoxicity of occupational exposure to wood dust: micronucleus frequency and nuclear changes in exfoliated buccal mucosa cells. Environ. Mol. Mutagen. 47(9): 693–698.

Çelik, A., et al. 2003. Cytogenetic effects of lambda-cyhalothrin on Wistar rat bone marrow. Mutat. Res. Genet. Toxicol Environ. Mutagen. 539(1-2): 91-97.

Çelik, A., et al. 2013. The protective role of curcumin on perfluorooctane sulfonate-induced genotoxicity: single cell gel electrophoresis and micronucleus test. Food Chem Toxicol. 53: 249-255.

Çelik, A., Öğenler, O., and Çömelekoğlu, Ü. 2005. The evaluation of micronucleus frequency by acridine orange fluorescent staining in peripheral blood of rats treated with lead acetate. Mutagenesis 20(6): 411-415.

Doherty AT, et al. 2001. Increased chromosome translocations and aneuploidy in peripheral blood lymphocytes of patients having revision arthroplasty of the hip. J. Bone Jt. Surg. Br. 83(7): 1075-1081.

Donaldson, K., et al. 2004. Nanotoxicology. Occup. Environ. Med. 61: 727–728.

EFSA, European Food Safety Authority. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA J. 2018; 16: 5327.

Esamaldeen Ebrahim Mohamed, A., Çelik, A., and Yetkin, D. 2021. Bismuth Oxide Nanoparticle: The Potential of Apoptotic and Genetic Damage on MDBK Cell Line Nanomedicine and Nanoscience Technology: Open Access., 1(1), 1-11

Fraga, C.G. 2005. Relevance, essentiality and toxicity of trace elements in human health, Mol. Aspects Med. 26 235–244.

Fu, L., et al. 2004. Molecular and a nanoscale materials and devices in electronics. Adv. Colloid Interface Sci. 111: 133–157.

Ghassemi-Barghi, N., et al. 2016. Role of recombinant human erythropoietin loading chitosan-tripolyphosphate nanoparticles in busulfan-induced genotoxicity: Analysis of DNA fragmentation via comet assay in cultured HepG2 cells. Toxicol. Vitro, 36: 46-52.

Giorgetti, L. 2019. Effects of nanoparticles in plants: phytotoxicity and genotoxicity assessment. Nanomaterials in Plants, Algae and Microorganisms, 65-87.

Hayashi, M, et al. 1994. In vivo rodent erythrocyte micronucleus assay. Mutat. Res. Genet.. Toxicol Environ. Mutagen. 312(3): 293-304.

Heikal, Y.M., et al. 2020 Green synthesized silver nanoparticles induced cytogenotoxic and genotoxic changes in Allium cepa L. varies with nanoparticles doses and duration of exposure. Chemosphere, 243: 125430.

IARC (International Agency for Research in Cancer), Arsenic, Metals, Fibres, and Dusts, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 100C, International Agency for Research in Cancer, Lyon, France, 2012

IARC (International Agency for Research in Cancer), Cobalt in Hard Metals and Cobalt Sulfate, Gallium Arsenide, Indium Phosphide and Vanadium Pentoxide, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 86, International Agency for Research in Cancer, Lyon, France, 2006.

Kazimirova, A., et al. 2019. Titanium dioxide nanoparticles tested for genotoxicity with the comet and micronucleus assays in vitro, ex vivo and in vivo. Mutat. Res. - Genet. Toxicol. Environ. Mutagen. 843, 57-65.

Khalil WK, et al. 2011. Genotoxicity evaluation of nanomaterials: DNA damage, micronuclei, and 8-hydroxy-2-deoxyguanosine induced by magnetic doped CdSe quantum dots in male mice. Chem Res Toxicol. 24:640e65.

Kuzma, J. and Priest, S. 2010. Nanotechnology, risk, and oversigh: learning lessons from related emerging Technologies. Risk Analysis30 (11): 1688–1698.

Lim, H.K., Asharani, P.V., and Hande, M.P. 2012. Enhanced genotoxicity of silver nanoparticles in DNA repair deficient mammalian cells. Frontiers in Genetic, Toxicogenomics 13, 104, 1-13.

Lison, D., et al. 2001. Update on the genotoxicity and carcinogenicity of cobalt compounds. Occup. Environ. Med. 58(10), 619-625

López-Moreno M.L., et al. 2010. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol. 1; 44(19): 7315–7320.

Meyers O. 1993. Implications of animal welfare on toxicity testing. Hum. Exp. Toxicol., 12: 516—521.

Narendra, P.S. 2000. Rapid communication: a simple method for accurate estimation of apoptotic cells. Exp. Cell Res. 256: 328-337.

NTP, in: H.A.H. Services (Ed.), 14th Report On Carcinogens: Cobalt And Cobalt Compounds That Release Cobalt Ions In Vivo, 2016.

O’Donoghue, J.L., Beevers, C., & Buard, A. 2021. Hydroquinone: assessment of genotoxic potential in the in vivo alkaline comet assay. Toxicol. Rep. 8, 206-214.

Papageorgiou I, et al. 2007. The effect of nano-and micron-sized particles of cobalt–chromium alloy on human fibroblasts in vitro. Biomaterials, 28(19): 2946-2958.

Piché, D., et al. 2019. Targeted T 1 magnetic resonance imaging contrast enhancement with extraordinarily small CoFe 2 O 4 nanoparticles. ACS Appl. Mater. Interfaces 11: 6724–6740.

Ponti, J., et al. 2009. Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride: an in vitro study in Balb/3T3 mouse fibroblasts. Mutagenesis, 24(5): 439-445.

Rajiv, S., et al. 2016. Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Hum. Exp. Toxicol. 35: 170–183.

Revell, P.A. 2006. The biological effects of nanoparticles. Nanotechnol Percept, 2: 283–98.

Salahdin, O.D., et al. 2022. Oxygen reduction reaction on metal doped nanotubes and nanocages for fuel cells. Ionics 28:3409–3419.

Schmid, W. 1973. Chemical mutagen testing on in vivo somatic mammalian cells. Agents and Actions, 3(2): 77–85.

Shaikh, S., Shyama, S K, & Desai, P.V. 2015. Absorption, LD50 and Effects of CoO, MgO and PbO Nanoparticles on Mice" Mus musculus". IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT). 9(2 (ver 1): 32-38.3

Sinaci, C., et al. 2023. Sulfoxaflor insecticide exhibits cytotoxic or genotoxic and apoptotic potentialvia oxidative stress-associated DNA damage in human blood lymphocytescell cultures. Drug and Chemical Toxicology, 46, 5, 972–983.

Singh, N., et al. 2009. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials, 30(23-24): 3891-3914.

Singh, N.P., et al. 1988. Simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175(1): 184-191.

Tchounwou PB, et al. 2012. Heavy metal toxicity and the environment, EXS 101 133–164.

Turecka, K., et al. 2018. Antifungal Activity and Mechanism of Action of the Co(III) Coordination Complexes with Diamine Chelate Ligands Against Reference and Clinical Strains of Candida spp. Front. Microbiol. 9, 1594.

Valdiglesias, V., et al. 2015. Effects of iron oxide nanoparticles: Cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Environ. Mol. Mutagen. 56: 125–148.

Waani, S.P.T., et al. 2021. TiO2 nanoparticles dose, application method and phosphorous levels influence genotoxicity in Rice (Oryza sativa L.), soil enzymatic activities and plant growth. Ecotox. Envıron. Safe. 213: 111977.

Wan, R., et al. 2017. Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part. Fibre Toxicol. 14: 38.

Wang, K., Xu, J.J., and Chen, H.Y. 2005. A novel glucose biosensor based on the nanoscaled cobalt phthalocyanine-glucose oxidase biocomposite. Biosens. Bioelectron. 20: 1388–1396.

Wolf, M., Fischer, N., Claeys, M. 2019. Preparation of isolated Co3O4 and fcc-co crystallites in the nanometre range employing exfoliated graphite as novel support material. Nanoscale Adv. 1.8: 2910-2923.

Wu, J. and Sun, J. 2011. Investigation on mechanism of growth arrest induced by iron oxide nanoparticles in PC12 cells. J. Nanosci. Nanotechnol. 11: 11079–11083.

Zhang, Q., et al. 1998. Differences in the extent of inflammation caused by intratracheal exposure to three ultrafine metals: role of free radicals. J. Toxicol. Environ. Heal. Part A 53: 423–438.

Yayınlanmış

29.12.2024

Nasıl Atıf Yapılır

Çelik, A., Ordu, S., Yalın, S., & Sinaci, C. (2024). Kobalt Oksit Nanopartikülünün Sıçan Kemik İliğinde Genotoksisitesi: Tek Hücre Jel Elektroforezi-Mikronukleus Test. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 11(37), 77–89. https://doi.org/10.5281/zenodo.14599800

Sayı

Bölüm

Makaleler