Timerosal ve Metabolitlerinin Uyarılmış İnsan Lenfositlerinin (-S9/+S9) Hücre Çoğalma Kinetiği ve Mikronükleus Frekansı Üzerindeki İn Vitro Etkileri


Özet Görüntüleme: 54 / PDF İndirme: 41

Yazarlar

DOI:

https://doi.org/10.5281/zenodo.8189561

Anahtar Kelimeler:

Thimerosal, Micronucleus, human lymphocytes, cytokinesis block proliferation index

Özet

Thimerosal, aşılarda ve biyomedikal preparatlarda etilcıva içeren bir koruyucudur. Timerosalin insan periferik kan lenfositlerinde in vitro genotoksisite reaksiyonları hakkında çok az şey bilinmektedir. Çalışmada, kültüre edilmiş insan periferik kan lenfositlerinde S9 fraksiyonu olan ve olmayan koşullarda kısa süreli timerosal toksisitesi araştırılmıştır. Sitokinez-Blok Mikronükleus Testi, genotoksisitenin değerlendirilmesi için yararlı bir tekniktir. Kültüre edilmiş insan periferik kan lenfosit hücreleri, S9 fraksiyonu olmayan koşullar altında 37oC'de 72 saat boyunca 0.2ug/ml-0.6ug/ml konsantrasyonlarında timerosal ile inkübe edilmiştir. Kültüre edilmiş insan periferik kan lenfosit hücreleri, S9 fraksiyonu içeren koşullar altında 37°C'de 3 saat boyunca 0.2ug/ml-0.6ug/ml konsantrasyonlarında timerosal ile inkübe edilmiştir. Timerosal, hem S9 fraksiyonu olan hem de olmayan koşullar altında sitokinez ile bloke edilmiş lenfositlerde doza bağlı bir şekilde mikronükleus (MN) oluşumunu indüklemiştir. Ayrıca timerosalin 0,2 μg/mL dozu dışında, negatif kontrol ile karşılaştırıldığında tüm dozlarda sitokinez blok proliferasyon indeksinde önemli ölçüde düşüş gözlenmiştir.

Referanslar

Ball, L.K., Ball, R., Pratt, R.D. (2001). An assessment of thimerosal use in childhood vaccines. Pediatrics 107, 1147–1154. DOI: 10.1542/peds.107.5.1147

Baskin, D.S., Ngo, H. and Didenko, V.V. (2003). Thimerosal Induces DNA Breaks, Caspase-3 Activation, Membrane Damage, and Cell Death in Cultured Human Neurons and Fibroblasts Toxicological Sciences 74, 361–368. DOI: 10.1093/toxsci/kfg126

Blakley, B.R., Sisodia, C.S., Mukkur, T.K. (1980).The effect of methylmercury, tetraethyl lead, and sodium arsenite on the humoral immune response in mice. Toxicol Appl Pharmacol. 52, 245– 54. DOI: 10.1016/0041-008x(80)90111-8

Brunet, S., Guertin, F., Flipo, D., Fournier, M., Krzystyniak, K. (1993). Cytometric profiles of bone marrow and spleen lymphoid cells after mercury exposure in mice. Int J Immunopharmacol. 15, 811– 9. DOI: 10.1016/0192-0561(93)90018-t

Buchet, J.P., Ferreira, Jr., M., Burrion, J.B., Leroy, T., Kirsch- Volders, M., Van Hummelen, Jacques, P.J., Cupers, L., Delavignette, J.P., Lauwerys, R. (1995). Tumor markers in serum, polyamines and modified nucleosides in urine, and cytogenetic aberrations in lymphocytes of workers exposed to polycyclic aromatic hydrocarbons, Am. J. Ind. Med. 27, 523–543. DOI: 10.1002/ajim.4700270406

Cai J, Jones, D.P. (1998). Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem 273 (19), 11401–4. DOI: 10.1074/jbc.273.19.11401

Chung, H.T, Pae, H.O., Choi, B.M., Billiar, T.R., Kim, Y.M. (2001).Nitric oxide as a bioregulator of apoptosis. Biochem Biophys Res Commun. 282(5), 1075–1079. DOI: 10.1006/bbrc.2001.4670

Clarkson, T.W. (2002) “The Three Modern Faces of Mercury.” Environmental Health Perspectives 110. (suppl 1), 11-23. DOI: 10.1289/ehp.02110s111

Çelik A. (2006).The assesment of genotoxicity of carbamazepine using Cytokinesis-Block (CB) Micronucleus assay in cultured human blood lymphocytes. Drug and Chemical Toxicology). 29, 227–236. DOI: 10.1080/01480540600566832

Daum, J.R., Shepherd, D.M., Noelle, R.J. (1993). Immunotoxicology of cadmium and mercury on B-lymphocytes: I. Effects on lymphocyte function. Int. J. Immunopharmacol. 15: 383– 94. DOI: 10.1016/0192-0561(93)90049-5

Dórea, J.G. (2019). Multiple low-level exposures: Hg interactions with co-occurring neurotoxic substances in early life. BBA - General Subjects, 1863, 129243. DOI: 10.1016/j.bbagen.2018.10.015

Eastmond, D.A., Pinkel, D., (1990). Detection of aneuploidy and aneuploidy-inducing agents in human lymphocytes using fluorescence in situ hybridization with chromosome-specific DNA probes. Mutat. Res. 234, 303–318. DOI: 10.1016/0165-1161(90)90041-l

Elferink, J.G., (1999). Thimerosal: a versatile sulfhydryl reagent, calcium mobilizer, and cell function-modulating agent. Gen Pharmacol. 33(1), 1–6. DOI: 10.1016/s0306-3623(98)00258-4

Fenech, M., Morley, A.A. (1985). Measurement of micronuclei in lymphocytes. Mutat. Res. 147, 29–36. DOI: 10.1016/0165-1161(85)90015-9

Fenech, M. (1993). The cytokinesis block micronucleus technique: a detailed description of the method and its application to genotoxicity studies in human populations, Mutat. Res. 285, 35–44. DOI: 10.1016/0027-5107(93)90049-l

Gericke, M., Droogmans, G., Nilius, B. (1993). Thimerosal induced changes of intracellular calcium in human endothelial cells. Cell Calcium 14(3), 201–7. DOI: 10.1016/0143-4160(93)90067-g

Havarinasab, S., Häggqvist, B., Björn, E., Pollard, K.M., Hultman, P. (2005). Immunosuppressive and autoimmune effects of thimerosal in mice. Toxicol Appl Pharmacol; 204(2),109-121. DOI: 10.1016/j.taap.2004.08.019

Kiffe, M., Christen, P., Arni, P. (2003). Characterization of cytotoxic and genotoxic effects of different compounds in CHO K5 cells with the comet assay (single-cell gel electrophoresis assay) Mutation Research 537,151–168. DOI: 10.1016/s1383-5718(03)00079-2

Kirsch-Volders, M., Elhajouji, A., Cundari, E., Van Hummelen, P. (1997). The in vitro micronucleus test: a multi-endpoint assay to detect simultaneously mitotic delay, apoptosis, chromosome breakage, chromosome loss and non-disjunction, Mutat. Res. 392, 19–30. DOI:10.1016/S0165-1218(97)00042-6

Magos, L., Brown, A.W., Sparrow, S., Bailey, E., Snowden, R.T., Skipp, W.R., (1985). The comparative toxicology of ethyl- and methylmercury. Arch. Toxicol. 57, 260–267. DOI: 10.1007/BF00324789

Mason, M.M., Cate, C.C., Baker, J. (1971). Toxicology and carcinogenesis of various chemicals used in the preparation of vaccines. Clin Toxicol 4, 185–204. DOI: 10.3109/15563657108990959

McGowan, A.J., Ruiz-Ruiz, M.C., Gorman, A.M., Lopez-Rivas, A., Cotter, T.G. (1996). Reactive oxygen intermediate(s) (ROI): common mediator(s) of poly (ADP-ribose) polymerase (PARP) cleavage and apoptosis. FEBS Lett. 392(3), 299–303. 10.1016/0014-DOI:5793(96)00838-1

Migliore, L., Nieri, M. (1991). Evaluation of twelve potential aneuploidogenic chemicals by the in vitro human lymphocyte micronucleus assay, Toxicol. In Vitro 5, 325–336. DOI:10.1016/0887-2333(91)90009-3

Pichichero, M.E., Cemichiari, E., Lopreiato, J., Treanor, J., (2002). Mercury concentrations and metabolism in infants receiving vaccines containing thimerosal: a descriptive study. Lancet 360, 1737–1741. DOI: 10.1016/S0140-6736(02)11682-5

Seelbach, A., Fissler, B., Madle, S. (1993). Further evaluation of a modified micronucleus assay with V79 cells for detection of aneugenic effects. Mutat Res 303, 163–169. DOI.10.1016/0165-7992(93)90018-Q

Shenker, B.J., Guo, T.L., Shapiro, I.M. (1998). Low-level methylmercury exposure causes human T-cells to undergo apoptosis: evidence of mitochondrial dysfunction. Environ Res; 77, 149–59. DOI: 10.1006/enrs.1997.3816

Shenker, B.J., Rooney, C., Vitale, L., Shapiro, I.M. (1992). Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes: I. Suppression of T-cell activation. Immunopharmacol Immunotoxicol; 14, 539–53. DOI: 10.3109/08923979309066936

Szabo, C. (1996). DNA strand breakage and activation of poly-ADP ribosyltransferase: a cytotoxic pathway triggered by peroxynitrite. Free Radic Biol Med. 21(6),855–69. DOI: 10.1016/0891-5849(96)00170-0

Thompson, S.A., Roellich, K.L., Grossmann, A., Gilbert, S.G., Kavanagh, T.J. (1998). Alterations in immune parameters associated with low level methylmercury exposure in mice. Immunopharmacol Immunotoxicol. 20, 299– 314. DOI:10.3109/08923979809038546

Ueha-Ishibashi, T., Oyama, Y., Nakao, H., Umebayashi, C., Nishizaki, Y., Tatsuishi, T., Iwase, K., Murao, K., Seo, H. (2004). Effect of thimerosal, a preservative in vaccines, on intracellular Ca2+ concentration of rat cerebellar neurons. Toxicology 195, 77–84. DOI:10.1016/j.tox.2003.09.002

Van Hummelen, P., Kirsch-Volders, M. (1990)). An improved method for the in vitro micronucleus test using human lymphocytes, Mutagenesis 5, 203–204. DOI: 10.1093/mutage/5.2.203

Van Hummelen, P. Severi, M. Pauwels, W. Roosels, D. Veulemans, H. Kirsch Volders, M. (1994). Cytogenetic analysis of lymphocytes from fiberglass-reinforced plastics workers occupationally exposed to styrene, Mutat. Res. 310 157–165. DOI: 10.1016/0027-5107(94)90020-5

Van Hummelen, P., Kirsch-Volders, M. (1992). Analysis of eight known or suspected aneugens by the in vitro human lymphocyte micronucleus test, Mutagenesis 7, 447–455. DOI: 10.1093/mutage/7.6.447

Westphal, G. A., Asgari, S., Schulz, T.G. Bünger, J. Müller M., Hallier E. (2003). Thimerosal induces micronuclei in the cytochalasin B block micronucleus test with human lymphocytes. Arch Toxicol. 77: 50–55. DOI: 10.1007/s00204-002-0405-z

Stopper, H., Müller, S. (1997). Micronuclei as a biological endpoint for genotoxicity: a minireview, Toxicology in vitro 11(5), 661-667. DOI:10.1016/S0887-2333(97)00084-2

Yayınlanmış

25.07.2023

Nasıl Atıf Yapılır

Eke, D., & Çelik, A. (2023). Timerosal ve Metabolitlerinin Uyarılmış İnsan Lenfositlerinin (-S9/+S9) Hücre Çoğalma Kinetiği ve Mikronükleus Frekansı Üzerindeki İn Vitro Etkileri. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 10(28), 13–22. https://doi.org/10.5281/zenodo.8189561

Sayı

Bölüm

Makaleler