A Computational Study on 1, 4-Benzodioxane-Substituted Chalcone Derivative


Özet Görüntüleme: 75 / PDF İndirme: 61

Yazarlar

  • Sümeyya Serin Inonu University, Scientific and Technological Research Center, 44280, Malatya, Türkiye

DOI:

https://doi.org/10.5281/zenodo.10373784

Anahtar Kelimeler:

Chalcone, Lipophilicity, DFT, NBO

Özet

In this present study, a benzodioxane substituted chalcone derivative was investigated in aqueous solution and gas phase using calculations based on density functional theory (DFT). After optimizing the geometry of the molecule by using the B3LYP functional and 6-311++G(d,p) split-valence triple zeta basis set, experimental and theoretical structural parameters were compared and found to be compatible. The FT-IR analysis revealed that the experimental and theoretical results of C-H, C=O, and C=C stretching vibrations overlapped. Several quantum chemical reactivity descriptors were calculated and interpreted for both vacuum and water phases by means of HOMO and LUMO energies determined as a result of frontier molecular orbital (FMO) theory analysis. In order to characterize various intramolecular interactions and to estimate the corresponding stabilization energies, analysis of natural bond orbitals (NBO) was performed. As a result of the in-silico lipophilicity evaluation of the aforementioned chalcone derivative, the n-octanol/water partition coefficient (logPow) was calculated as 3.57. Therefore, it can be concluded that the molecule has lipophilic character. This finding is also supported by the molecular lipophilicity potential (MLP) map.

Referanslar

Ali, J., Camilleri, P., Brown, M. B., Hutt, A. J., & Kirton, S. B. (2012). In Silico Prediction of Aqueous Solubility Using Simple QSPR Models: The Importance of Phenol and Phenol-like Moieties. Journal of Chemical Information and Modeling, 52, 2950−2957.

Becke A.D. (1993). A new mixing of Hartree–Fock and Local Density‐Functional Theories, Journal of Chemical Physics, 98, 1372–1377.

Becke A.D. (1993). Density‐Functional Thermochemistry. III. The Role of Exact Exchange, Journal of Chemical Physics, 98, 5648–5652.

Daina, A.; Michielin, O.; Zoete, V. (2017). SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-likeness and Medicinal Chemistry Friendliness of Small Molecules, Scientific Reports, 7(1), 1.

Delaney, J. S. (2004). ESOL: Estimating Aqueous Solubility Directly from Molecular Structure. Journal of Chemical Information and Computer Sciences, 44, 1000-1005.

Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 6 Semichem Inc., Shawnee Mission, KS. 2016.

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E. et.al. Gaussian 16 Rev. B.01, Wallingford, CT, 2016.

Gaillard P., Carrupt P.A., Testa B., Boudon A. (1994). Molecular Lipophilicity Potential, a tool in 3D QSAR: Method and applications, Journal of Computer-Aided Molecular Design, 8, 83.

Katariya, K.D., Soni, R., Nakum, K.J., Patel, D., Nada, S., Hagar, M. (2023). New Symmetric/Unsymmetrical Self-assembling Salicylaldimine-Chalcones: Synthesis, Photophysical Study and DFT Approach, Journal of Molecular Structure, 136610.

Kınalı, M., Çol, S., Çakır Çoban, C., Türk, M., Aydın, G., Emirik, M., Baran, A. (2023). Chalcone-Based Dipolar Cycloaddition of Novel Heteroaromatic Compounds: Their Anticancer Examination, Journal of Molecular Structure 1293, 136244.

Koopmans, T. (1934). Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms, Physica, 1–6, 104–113

Lakhia, R., Verma, N.K., Raghav, N., Pundeer, R. (2023). Chalcone and Pyrazoline Derivatives of Dehydroacetic Acid as Digestive Enzyme Effectors and In Silico Studies, Journal of Molecular Structure 1291, 135884.

Lee C., Yang W., Parr R.G. (1988). Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density, Physical Review B 37, 785–789.

Marenich A.V., Cramer C.J., Truhlar D.G. (2009). Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, Journal of Physical Chemistry B, 113 (18), 6378-6396.

Molinspiration Cheminformatics free web services, https://www.molinspiration.com, Slovensky Grob, Slovakia.

Nayak, Y.N., Gaonkar, S.L., Sabu, M. (2023). Chalcones: Versatile Intermediates in Heterocyclic Synthesis, Journal of Heterocyclic Chemistry, 60:1301–1325.

O’Boyle N. M., Tenderholt A. L. Langer K. M. (2008). Cclib: A Library for Package-Independent Computational Chemistry Algorithms, Journal of computational chemistry, 29 (5), 839-45.

Parr, R.G. (1999). Electrophilicity index, Journal of American Chemical Society, 121,1922-1924.

Parr, R.G., Pearson, R.G. (1983). Absolute hardness: companion parameter to absolute electronegativity, Journal of American Chemical Society, 105, 7512-7516.

Pearson, R.G. (1986). Absolute electronegativity and hardness correlated with molecular orbital theory, Proceedings of the National Academy of Sciences USA, 83, 8440-8441.

Perdew J.P., Levy M. (1983). Physical content of the exact kohn-sham orbital energies: band gaps and derivative discontinuities, Physical Review Letters, 51, 1884-1887.

Perdew J.P., Parr R.G., Levy M., Balduz J.L. (1982). Density-functional theory for fractional particle number: derivative discontinuities of the energy, Physical Review Letters, 49, 1691.

Reed A.E., Curtiss L.A., Weinhold F. (1988). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chemical. Reviews. 88(6), 899-926

Silicos-it. (n.d.). Retrieved from https://www.silicos-it.be

Sundaraganesan N., Ilakiamani S., Salem H., Wojciechowski P.M., Michalska D. (2005). FT-Raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine, Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 61, 2995–3001.

Thapa, P., Upadhyay, S.P., Suo, W.Z., Singh, V., Gurung, P., Lee, E.S., Sharma, R., Sharma, M. (2021). Chalcone and Its Analogs: Therapeutic and Diagnostic Applications in Alzheimer’s Disease, Bioorganic Chemistry 108, 104681.

Vinaya, Richard, A.S., Murthy, S.M., Basavaraju, Y.B., Yathirajana H.S., Parkin, S. (2023). The Synthesis, Crystal Structure and Spectroscopic Analysis of (E)-3-(4-chlorophenyl)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)prop-2-en-1-one, Acta Crystallographica Section E: Crystallographic Communications, E79, 674–677.

Weinhold F., Landis C.R., Glendening E.D. (2016). What is NBO analysis and how is it useful, International Reviews in Physical Chemistry, 35, 399-440.

Yayınlanmış

25.11.2023

Nasıl Atıf Yapılır

Serin, S. (2023). A Computational Study on 1, 4-Benzodioxane-Substituted Chalcone Derivative. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 10(30), 9–20. https://doi.org/10.5281/zenodo.10373784

Sayı

Bölüm

Makaleler