Investigation of the Biological Activities of Sulfonamide-Based Imine Compounds


Abstract views: 181 / PDF downloads: 114

Authors

DOI:

https://doi.org/10.5281/zenodo.8237772

Keywords:

Sulfonamide-based Schiff bases, DNA binding, DNA cleavage, Antibacterial, Antifungal, Antioxidant

Abstract

In this study, three sulfonamide-based Schiff bases were prepared: 4-Fluoro-N-(2-hydroxy-5-methylbenzylidene) benzenesulfonamide (C1), 4-Fluoro-N-(2-hydroxy-5-nitrobenzylidene) benzenesulfonamide (C2) and 4-Fluoro-N-((2-hydroxynaphthalen-1-yl)methylene) benzenesulfonamide (C3). DNA cleavage and binding capabilities of the prepared compounds were investigated agarose gel electrophoresis and by UV-Vis spectroscopy, and their antioxidant capacities were investigated in vitro by DPPH, ABTS, FRAP, CUPRAC, superoxide and hydroxyl radical scavenging methods. In addition, the antimicrobial and antibiofilm activities of the compounds were examined. As a result of UV-Vis spectroscopy studies, compounds were observed to interact electrostatically with Calf Thymus DNA (CT-DNA). From the gel electrophoresis results, C2 and C3 cleaved pBR322 plasmid DNA (pDNA) hydrolytically and oxidatively at different concentrations, while C1 cleaved the DNA oxidatively. The antioxidant capacities of the compounds were compared with standard butylated hydroxytoluene (BHT) solution and ascorbic acid. C1 was the most active according to DPPH, ABTS radical scavenging, superoxide and hydroxyl anion scavenging activity results, while C3 was more active according to FRAP and CUPRAC tests. Compounds were found to be effective on the growth of both bacteria and yeasts by the Minimum Inhibitory Concentration (MIC) method. In the antifungal activity study using the disk diffusion method, C1 did not show antifungal activity, while C2 and C3 displayed antifungal activity. In addition, all compounds exhibited different levels of antibiofilm activity depending on the bacteria used.

References

Abu Bakar, M. F., Ahmad, N. E., Abdul Karim, F., & Saib, S. (2014). Phytochemicals and antioxidative properties of borneo indigenous liposu (Baccaurea lanceolata) and tampoi (Baccaurea macrocarpa) fruits. Antioxidants, 3(3), 516-525.

Ahmed, M., Pickova, J., Ahmad, T., Liaquat, M., Farid, A., & Jahangir, M. (2016). Oxidation of lipids in foods. Sarhad Journal of Agriculture, 32(3), 230-238.

Akhtar, M.S., Ismail, A., Murtaza, S., Tahir, M.N., Shamim, S., & Rana, U.A. (2016). Biological and Docking Studies of Sulfonamide Derivatives of 4-Aminophenazone. Journal of the Chemical Society of Pakistan, 38(2), 242-257.

Alaghaz, A. N. M., Zayed, M. E., Alharbi, S. A. (2015). Synthesis, spectral characterization, molecular modeling and antimicrobial studies of tridentate azo-dye Schiff base metal complexes. Journal of Molecular Structure, 1084, 36-45.

Apak, R., Güçlü, K., Özyürek, M., Karademir, S.E., & Altun, M. (2005). Total antioxidant capacity assay of human serum using copper (II)-neocuproine as chromogenic oxidant: the CUPRAC method. Free Radical Research, 39(9), 949-961.

Artini, M., Cicatiello, P., Ricciardelli, A., Papa, R., Selan, L., Dardano, P., ... & Parrilli, E. (2017). Hydrophobin coating prevents Staphylococcus epidermidis biofilm formation on different surfaces. Biofouling, 33(7), 601-611.

Azgın, F. (2013). Topraktan İzole Edilen Farklı Bacillus sp. Suşlarının Antifungal Etkinliklerinin Saptanması. Yüksek Lisans tezi. Çukurova Üniversitesi. 73.

Basak, A., Mandal, S., Das, A. K., &Bertolasi, V. (2002). Benzene fused monocyclic enediynyl amides: synthesis, reactivity and DNA-cleavage activity in comparison to the corresponding sulfonamides. Bioorganic and Medicinal Chemistry Letters, 12(6), 873-877.

Basser, M. A. & Mote, N. A. (2001). Synthesis and antimicrobial activity of some Schiff bases from benzothiazoles. Asian Journal of Chemistry, 13(2), 496-500.

Blois, M.S., (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181:1199-1200.

Chohan, Z. H., Pervez, H., Rauf, A., Khan, K. M., & Supuran, C. T. (2004). Isatin-derived antibacterial and antifungal compounds and their transition metal complexes. Journal of Enzyme Inhibition and Medicinal Chemistry, 19(5), 417-423.

Choiri, S., Fitriastuti, R., Faradiva, F. Z., & Rahayu, W. V. (2022). Antioxidant Activity and Nano Delivery of the Most Frequently Applied Stilbene Derivates: A Brief and Recent Review. Pharmaceutical Sciences, 28(3), 365-375.

Clercq, E. (2001). New developments in anti-HIV chemotherapy. Current Medicinal Chemistry, 8(13), 1543-1572.

El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M., & El-Kerdawy, M. M. (2011). Synthesis and antitumor activity of new sulfonamide derivatives of thiadiazolo [3, 2-a] pyrimidines. European Journal of Medicinal Chemistry, 46(9), 3714-3720.

Ganji, N., Rambabu, A., Vamsikrishna, N., Daravath, S., & Shivaraj. (2018). Copper(II) complexes with isoxazole Schiff bases: Synthesis, spectroscopic investigation, DNA binding and nuclease activities, antioxidant and antimicrobial studies. Journal of Molecular Structure, (1173), 173-182.

Genç, Y., Özkanca, R., & Bekdemir, Y. (2008). Antimicrobial activity of some sulfonamide derivatives on clinical isolates of Staphylococus aureus. Annals of Clinical Microbiology and Antimicrobials, 7(1), 1-6.

Hangan, A. C., Turza, A., Lucaciu, R. L., Sevastre, B., Páll, E., Oprean, L. S., & Borodi, G. (2022). New Cu+ 2 Complexes with N-Sulfonamide Ligands: Potential Antitumor, Antibacterial, and Antioxidant Agents. Molecules, 27(10), 3338.

Kanwal, N., Khan, I. U., Hussain, E. A., Farid, S., & Şahin, O. (2016). Efficient syntheses, crystal structure, thermal and biological evaluation of amlodipine 4-chlorobenzoyl, 4-chlorobenzene and 2, 5-dichlorobenzene sulfonamide derivatives. Comptes Rendus Chimie, 19(5), 594-603.

Kausar, N., Muratza, S., Raza, M. A., Rafique, H., Arshad, M. N., Altaf, A. A., Asiri, A.M, Shafqat, S.S, Shafqat, S. R. (2019). Sulfonamide hybrid schiff bases of anthranilic acid: Synthesis, characterization and their biological potential. Journal of Molecular Structure, 1185, 8-20.

Kurt, B.Z. (2018). Sinnamaldehitin yeni schiff bazlarının sentezi ve antioksidan özelliklerinin incelenmesi. Sakarya University Journal of Science, 22 (3), 1024-1032.

Li, Q., Xu, L., & Ma, D. (2022). Cu‐Catalyzed Coupling Reactions of Sulfonamides with (Hetero) Aryl Chlorides/Bromides. Angewandte Chemie International Edition, 61(43), e202210483.

Lolak, N. & Akocak, S. (2020). Biological evaluation of aromatic bis-sulfonamide Schiff bases as antioxidant, acetylcholinesterase and butyrylcholinesterase inhibitors. Cumhuriyet Science Journal, 41(2), 413-418.

Merritt, J. H., Kadouri, D. E., & O'Toole, G. A. (2005). Growing and analyzing static biofilms. Coico R., Kowalik T., Quarles J.M., Stevenson B., Taylor R.K (ed.). in: Current Protocol in Microbiology. Chapter 1: Unit 1B.1, 17p. John Wiley & Sons, Inc.: New York.

Mizdal, C. R., Stefanello, S. T., da Costa Flores, V., Agertt, V. A., Bonez, P. C., Rossi, G. G., ... and de Campos, M. M. A. (2018). The antibacterial and anti-biofilm activity of gold-complexed sulfonamides against methicillin-resistant Staphylococcus aureus. Microbial Pathogenesis, 123, 440-448.

Mondal, S., Mandal, S. M., Mondal, T. K., & Sinha, C. (2017). Spectroscopic characterization, antimicrobial activity, DFT computation and docking studies of sulfonamide Schiff bases. Journal of Molecular Structure, 1127, 557-567.

More, P. G., Karale, N. N., Lawand, A. S., Narang, N., Patil, R. H. (2014). Synthesis and anti-biofilm activity of thiazole Schiff bases. Medicinal Chemistry Research, 23(2), 790-799.

Petri, W. A. (2006). Sulfonamides, trimethoprim, sulfamethoxazole, quinolones, and agents for urinary tract infections. Goodman & Gilman’s the pharmacological basis of therapeutics. New York (NY): McGraw Hill, 1111-1125.

Rama, I., & Ramaswami, S. (2014). Synthesis, spectral characterization, thermal and biocidal properties of metal complexes with N-substituted sulfonamides. J. Indian Chem. Soc, 91, 1877-1886.

Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice- Evans C., (1999). Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radical Biology and Medicine. 26: 1231–1237.

Sairaj, V., Sundarrajan, B., Mani, N. K., & Muthuswamy, K. (2022). Bio functional molecular complexes, ferrocenyl hydrazone based binuclear Cu (II) derivatives: Synthesis, spectral, DNA/BSA binding & in-silico analyses. Results in Chemistry, 4, 100624.

Salehi, M., Faghani, F., Kubicki, M. & Bayat, M. (2018). New complexes of Ni (II) and Cu (II) with tridentate ONO Schiff base ligand: synthesis, crystal structures, electrochemical and theoretical investigation. Journal of the Iranian Chemical Society, 15, 2229-2240.

Sharma, R.N., Xavier, F.P., Vasu, K.K., Chaturvedi, S.C., Pancholi, S.S. (2009). Synthesis of 4-benzyl-1,3-thiazole derivatives as potential antiinflammatory agents: an analogue-based drug design approach. J Enzym Inhib Med Chem 24, 890–897.

Siqueira, F. D. S., Alves, C. F. D. S., Machado, A. K., Siqueira, J. D., Santos, T. D., Mizdal, C. R., ... and de Campos, M. M. A. (2021). Molecular docking, quorum quenching effect, antibiofilm activity and safety profile of silver-complexed sulfonamide on Pseudomonas aeruginosa. Biofouling, 37(5), 555-571.

Spoering, A.L, Lewis, K. (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183, 6746–6751

Szczepaniak, B. & Bragiel, P. (1995). The influence of oxygen adsorption on the electronic structure of copper phthalocyanine. Vacuum, 46(5-6), 465-467.

Tekin, S., Karatay, A., Erdener, D., Yildiz, E. A., Boyacioglu, B., Ünver, H., ... and Elmalı, A. (2022). Colorimetric probe and optical behaviours of new azomethine derivatives of sulfonamide. Journal of Molecular Structure, 1253, 132239.

Uddin, M. N., Ahmed, S. S. and Alam, S. R. (2020). Biomedical applications of Schiff base metal complexes. Journal of Coordination Chemistry, 73(23), 3109-3149.

Van Houdt, R. & Michiels, C. W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of Applied Microbiology, 109(4), 1117-1131.

Yapar, G., Demir, N., Kiraz, A., Özkat, G. Y., & Yıldız, M. (2022). Synthesis, biological activities, antioxidant properties, and molecular docking studies of novel bis-schiff base podands as responsive chemosensors for anions. Journal of Molecular Structure, 133530.

Zhang, Y., Zou, B., Chen, Z., Pan, Y., Wang, H., Liang, H., & Yi, X. (2011). Synthesis and antioxidant activities of novel 4-Schiff base-7-benzyloxy-coumarin derivatives. Bioorganic & Medicinal Chemistry Letters, 21(22), 6811-6815.

Zhong, Z., Ji, X., Xing, R., Liu, S., Guo, Z., Chen, X., & Li, P. (2007). The preparation and antioxidant activity of the sulfanilamide derivatives of chitosan and chitosan sulfates. Bioorganic & Medicinal Chemistry, 15(11), 3775-3782.

Downloads

Published

2023-07-25

How to Cite

Bilgi, G. T., & Demir, N. (2023). Investigation of the Biological Activities of Sulfonamide-Based Imine Compounds. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 10(28), 143–155. https://doi.org/10.5281/zenodo.8237772

Issue

Section

Articles