An Overview of the Relationship Between Artificial Intelligence and Law in Forensic Medicine
Abstract views: 557 / PDF downloads: 316
DOI:
https://doi.org/10.5281/zenodo.8232713Keywords:
Artificial Intelligence, Forensic Medicine, LawAbstract
Forensic medicine is a discipline that combines medical and legal sciences to support legal processes in many areas such as determining the causes of crimes and deaths, creating offender profiles, and analyzing evidence. Forensic medicine is used in many fields such as collecting evidence from the scene of an incident, writing autopsy reports, analyzing blood and DNA, and interpreting pathological images. On the other hand, artificial intelligence (AI) is the imitation of human intelligence through computer systems, enabling these systems to learn, make decisions, and solve problems. AI is used in many different fields, and in recent years, it has also been widely used in forensic medicine. The use of AI in forensic medicine can provide faster and more accurate results compared to traditional methods. AI algorithms can be used to obtain fast and accurate results in tasks such as creating offender profiles, examining the crime scene, and analyzing evidence. Additionally, the use of AI in tasks such as interpreting pathological images or writing autopsy reports can increase accuracy and speed up processes. By using image processing, data analysis, machine learning, and other technologies used in the diagnosis and diagnostic process of forensic medicine, AI can play an important role in the analysis of criminal evidence and the judicial process. AI-based software can be used in fingerprint analysis, DNA analysis, facial recognition, and other biometric analyses to collect evidence and identify criminals. Furthermore, AI-based software can also be used in analyzing evidence and determining guilt or innocence in the judicial process. In contrast to traditional methods, AI algorithms can process and analyze data more quickly to obtain faster and more accurate results. Additionally, the risk of misdiagnosis or misjudgment due to human errors can be reduced. Therefore, the use of AI in forensic medicine is considered an important development.This paper provides information about studies on the use of AI in forensic medicine to create awareness of the use of AI in this field.
References
Açıkgöz, N., Hancı, İ. H., & Çakır, A. H. (2002). Olay Yerinden DNA Analizi İçin Biyolojik Örnek Toplama Ve Örneklerin Laboratuara Gönderilme Usulleri. Ankara Üniversitesi Hukuk Fakültesi Dergisi, 51(2), 1. https://doi.org/10.1501/Hukfak_0000000567
Agarwal, A., Mittal, M., Pathak, A., & Goyal, L. M. (2020). Fake News Detection Using a Blend of Neural Networks: An Application of Deep Learning. SN Computer Science, 1–9. https://doi.org/https://doi.org/10.1007/s42979-020-00165-4
Anonim, (2023. Yüz tanıma sisteminin işleyişi. Web adresi: https://www.dataprom.com.tr/urunlerimiz/yuz-tanima. Erişim Tarihi: 16.05.2023.
Asci, F., Costantini, G., Di Leo, P., Zampogna, A., Ruoppolo, G., Berardelli, A., Saggio, G., & Suppa, A. (2020). Machine-Learning Analysis of Voice Samples Recorded through Smartphones: The Combined Effect of Ageing and Gender. Sensors, 20(18), 5022. https://doi.org/10.3390/s20185022
Ayata, F. ve Çavuş, H., (2022). Yüz Tanıma Sistemlerinde Kullanılan ESA, YGH-DVM ve DSA Algoritmalarının Performans Testleri. Firat University Journal of Science , vol.34, no.1, 39-48.
Ayata, F., (2020). İçerik Tabanlı Görüntü Erişim Yöntemleriyle Aile Bireylerinde Yüz Tanıma Sistemi, Van Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi. Van. Türkiye.
Aykurt, DC., (2019). Yüzün tanıma algoritmaları ve uygulamaları. Web adresi: https://ieee.omu.edu.tr/yuz-tanima-algoritmalari-ve-uygulamalari/. Erişim Tarihi:16.05.2023.
Bayrakdar, S., Akgün, D., ve Yücedağ, İ., (2016). Yüz ifadelerinin otomatik analizi üzerine bir literatür çalışması A survey on automatic analysis of facial expressions. SAÜ Fen Bilimleri Dergisi, 20(2): 383–398.
Bond, C. F. J., & DePaulo, B. M. (2006). Accuracy of Deception Judgments. Personality and Social Psychology Review, 10(3), 214–234. https://doi.org/https://doi.org/10.1207/s15327957pspr100
Burns, M. A., Johnson, B. N., Brahmasandra, S. N., Handique, K., Webster, J. R., Krishnan, M., Sammarco, T. S., Man, P. M., Jones, D., Heldsinger, D., Mastrangelo, C. H., & Burke, D. T. (1998). An Integrated Nanoliter DNA Analysis Device. Science, 282(5388), 484–487. https://doi.org/10.1126/science.282.5388.484
Chaves, D., Fidalgo, E., Alegre, E., Rodriguez, R.A., Martino, F.J. and Azzopardi, G. (2019). Assessment and estimation of face detection performance based on deep learning for forensic applications, Sensors, vol. 20, no. 16, pp. 4491.
Deepak, G., Rooban, S., & Santhanavijayan, A. (2021). A knowledge centric hybridized approach for crime classification incorporating deep bi-LSTM neural network. Multimedia Tools and Applications, 80, 28061–28085. https://doi.org/https://doi.org/10.1007/s11042-021-11050-4
Doğan Alakoç, Y. (2010). Adli Bilimlerde DNA Analizleri. Ankara Sağlık Hizmetleri Dergisi, 9(2), 1–8.
Dumais, S. (1998). Using SVMs for Text Categorization. IEEE Intelligent Systems Magazine, 13(4), 18–28.
Ekhande, S., Patil, U., & Kulhalli, K. V. (2022). Review on effectiveness of deep learning approach in digital forensics. International Journal of Electrical & Computer Engineering (2088-8708), 12(5), 5481–5492.
Fernandes, K., Cardoso, J.S. ve Astrup, B.S. (2018). A deep learning approach for the forensic evaluation of sexual assault, Pattern Analysis and Applications, vol. 21, pp. 629–640.
Fornaciari, T., & Poesio, M. (2013). Automatic deception detection in Italian court cases. Artificial Intelligence and Law, 21, 303–340. https://doi.org/https://doi.org/10.1007/s10506-013-9140-4
Glomb, P., Romaszewski, M., Cholewa, M. ve Domino, K. (2018). Application of hyperspectral imaging and machine learning methods for the detection of gunshot residue patterns, Forensic Science International, vol. 290, pp. 227–237.
İncesu, E. (2018). Virtopsi hakkında neler biliyoruz?. Sağlık Akademisyenleri Dergisi, 5 (3), 234-237. Retrieved from https://dergipark.org.tr/tr/pub/sagakaderg/issue/42849/518183
Jain A.K. ve Ross A. (2015). Bridging the Gap: from Biometrics to Forensics. Philosophical Transactions of the Royal Society B: Biological Sciences,370 (1674):20140254.
Kinnunen, T., & Li, H. (2010). An overview of text-independent speaker recognition: From features to supervectors. Speech Communication, 52(1), 12–40. https://doi.org/10.1016/j.specom.2009.08.009
Manaswini, D., Ghanta, SSV., Manogna, TL., Kolakalapudi, LNK., Chaitanya, GK. ve Kumar, AD., (2023). A Survey of Forensic Applications using Digital Image Processing: Image Enhancement Case Study, 2023 7th International Conference on Computing Metodologies and Communication (ICCMC), Erode, Hindistan, 2023, s. 696-702, doi: 10.1109/ICCMC56507.2023.10084079.
Mena J. (2011). Machine Learning Forensics for Law Enforcement, Security, and Intelligence: CRC Press.
Morrison, G. S., & Zhang, C. (2023). Forensic Voice Comparison: Overview. In Encyclopedia of Forensic Sciences, Third Edition (pp. 737–750). Elsevier. https://doi.org/10.1016/B978-0-12-823677-2.00130-6
Mujtaba, G., Shuib, L., Raj, R. G., Rajandram, R., & Shaikh, K. (2016). Automatic Text Classification of ICD-10 Related CoD from Complex and Free Text Forensic Autopsy Reports. 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), 1055–1058. https://doi.org/10.1109/ICMLA.2016.0191
Nair, P. C., Gupta, D., & Devi, B. I. (2020). A Survey of Text Mining Approaches, Techniques, and Tools on Discharge Summaries. In X. Gao, S. Tiwari, M. Trivedi, & K. Mishra (Eds.), Advances in Computational Intelligence and Communication Technology (pp. 331–348). Springer. https://doi.org/https://doi.org/10.1007/978-981-15-1275-9_27
Özdemir, A., Saraydemir, O. T. Ş., & Koçer, H., (2014). Termal Görüntülemede Polarite Değişiminin Yüz Tanıma Performansına Etkisi. 7.Mühendislik ve Teknoloji Sempozyumu. Ankara.
Pestian, J. P., Matykiewicz, P., Linn-Gust, M., South, B., Uzuner, O., Wiebe, J., Cohen, K. B., Hurdle, J., & Brew, C. (2012). Sentiment Analysis of Suicide Notes: A Shared Task. Biomedical Informatics Insights, 5s1, BII.S9042. https://doi.org/10.4137/BII.S9042
Ramnial, H., Panchoo, S., & Pudaruth, S. (2015). Authorship Attribution Using Stylometry and Machine Learning Techniques. In S. Berretti, S. Thampi, & P. Srivastava (Eds.), Intelligent Systems Technologies and Applications. Advances in Intelligent Systems and Computing (pp. 113–125). Springer. https://doi.org/https://doi.org/10.1007/978-3-319-23036-8_10
Saini, K. ve Kaur, S., (2016). Forensic examination of computer-manipulated documents using image processing techniques, Egyptian Journal of Forensic Sciences, Volume 6, Issue 3,Pages 317-322, ISSN 2090-536X, https://doi.org/10.1016/j.ejfs.2015.03.001.
Saleem, S., Subhan, F., Naseer, N., Bais, A., & Imtiaz, A. (2020). Forensic speaker recognition: A new method based on extracting accent and language information from short utterances. Forensic Science International: Digital Investigation, 34. https://doi.org/https://doi.org/10.1016/j.fsidi.2020.300982
Savova, G. K., Masanz, J. J., Ogren, P. V, Zheng, J., Sohn, S., Kipper-Schuler, K. C., & Chute, C. G. (2010). Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. Journal of the American Medical Informatics Association, 17(5), 507–513. https://doi.org/10.1136/jamia.2009.001560
Sreenu, G. ve Durai, M.A.S. (2019). Intelligent video surveillance: A review through deep learning techniques for crowd analysis, J Big Data, vol. 6, no. 48.
Suppa, A., Asci, F., Saggio, G., Di Leo, P., Zarezadeh, Z., Ferrazzano, G., Ruoppolo, G., Berardelli, A., & Costantini, G. (2021). Voice Analysis with Machine Learning: One Step Closer to an Objective Diagnosis of Essential Tremor. Movement Disorders, 36(6), 1401–1410. https://doi.org/10.1002/mds.28508
Swaminathan, H., Grgicak, C. M., Medard, M., & Lun, D. S. (2015). NOC It : A computational method to infer the number of contributors to DNA samples analyzed by STR genotyping. Forensic Science International: Genetics, 16, 172-180. https://doi.org/10.1016/j.fsigen.2014.11.010
Talandova, H., Kralik, L. ve Adamek, M., (2016). Determination of The Uncertainties and the Physiological Similarities of Family Members by Using the Biometric Device the Broadway 3D. International Journal of Applied Engineering Research. 11: 6373- 6375.
Tanrıkut, C., (2019). Görüntü işlemede yüz tanıma temel bileşenler analizi ve doğrusal diskriminant analizi yöntemlerinin Android mobil uygulamada karşılaştırılması. Beykent Üniversitesi, Fen Bilimleri Enstitüsü. Yüksek lisans tezi. İstanbul. Türkiye.
Taylor, D., Bright, J.-A., & Buckleton, J. (2014). Interpreting forensic DNA profiling evidence without specifying the number of contributors. Forensic Science International: Genetics, 13, 269-280. https://doi.org/10.1016/j.fsigen.2014.08.014
Taylor, D., & Powers, D. (2016). Teaching artificial intelligence to read electropherograms. Forensic Science International: Genetics, 25, 10-18. https://doi.org/10.1016/j.fsigen.2016.07.013
Thakur, R. ve Rohilla, R. (2020). Recent advances in digital image manipulation detection techniques: A brief review, Forensic Science International, vol. 312, no. 110311.
van Dijk, W. B., Fiolet, A. T. L., Schuit, E., Sammani, A., Groenhof, T. K. J., van der Graaf, R., de Vries, M. C., Alings, M., Schaap, J., Asselbergs, F. W., Grobbee, D. E., Groenwold, R. H. H., & Mosterd, A. (2021). Text-mining in electronic healthcare records can be used as efficient tool for screening and data collection in cardiovascular trials: a multicenter validation study. Journal of Clinical Epidemiology, 132, 97–105. https://doi.org/10.1016/j.jclinepi.2020.11.014
Verde, L., De Pietro, G., & Sannino, G. (2018). Voice Disorder Identification by Using Machine Learning Techniques. IEEE Access, 6, 16246–16255. https://doi.org/10.1109/ACCESS.2018.2816338
Yu, C.-H., Ward, M. W., Morabito, M., & Ding, W. (2011). Crime Forecasting Using Data Mining Techniques. 2011 IEEE 11th International Conference on Data Mining Workshops, 779–786. https://doi.org/10.1109/ICDMW.2011.56
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.