Autonomic Nervous System Affection Due to Post-Covid Syndrome


Abstract views: 239 / PDF downloads: 129

Authors

DOI:

https://doi.org/10.5281/zenodo.7968870

Keywords:

Autonomic Nervous System Disorders, Heart Rates, Long COVID, Post-Acute COVID syndrome

Abstract

The persistence of symptoms for 12 weeks or longer in individuals with Covid-19 and the wide range of symptoms suggested that the autonomic nervous system (ANS) may be affected. The aim of this study is to reveal the possible relationship between Post Covid syndrome (PCS) and ANS disorders by measuring Heart Rate Variability. A total of 60 participants whom between the ages of 18-45 were included in the study and divided into three groups: Group 1(participants have never had Post-Covid Syndrome), Group 2 (recovered after Covid-19) and Group 3 (participants who had never Covid-19 infection). A 5-minute heart rate variability measurement was performed in the resting position for the patients in each group.  A statistically significant low Stress Index score was found in Group 1 (participants have never had Post-Covid Syndrome) (p<0.05).  While a significant low measurement was observed in the SNS index in Group 1(p<0.05), a significant  high score was observed in Group  3 (p<0.05), which consisted of participants who had experienced PCS. The RMSSD and HF variable, a significant low score was observed in Group 3 (p<0.05).

As a result of this study, it was observed that sympathetic activity dominance clearly emerged and caused autonomic dysfunction in participants with PCS, compared to individuals who had never had Covid 19 infection and recovered from Covid 19 infection.

References

Greenhalgh, T.; Knight, M.; A’Court, C.; Buxton, M.; Husain, L. Management of post-acute COVID-19 in primary care. BMJ 2020, 370, m3026.https://doi.org/10.1136/bmj.m3026

National Insitute for Health and Care Excellence; SIGN. Royal College of General Practitioners COVID-19 Guideline Scope: Management of the Long-Term Effects of COVID-19; NICE: London, UK, 2020; pp. 1–7.

Cares-MarambioK,Montenegro-JimenezY,Torres-Castro R, et al. Prevalence of potential respiratory symptoms in survivors of hospital admission after coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Chron Respir Dis. 2021;18:14799731211002240.

Konig MF, Powell M, Staedtke V, et al. Preventing cytokine storm syndrome in COVID-19 using α-1 adrenergic receptor antagonists. J Clin Invest. 2020;130(7):3345-3347. doi:10.1172/JCI139642

Goldstein DS. The extended autonomic system, dyshomeostasis, and COVID-19. Clin Auton Res 2020;30:299–315.

Dani M, Dirksen A, Taraborrelli P, et al. Autonomic dysfunction in 'long COVID': rationale, physiology and management strategies. Clin Med (Lond). 2021;21(1):e63-e67. doi:10.7861/clinmed.2020-0896

McCorry LK. Physiology of the autonomic nervous system. Am J Pharm Educ. 2007 Aug 15;71(4):78.

Tindle J, Tadi P. Neuroanatomy, Parasympathetic Nervous System. [Updated 2021 Nov 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan.

Malik M. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93:1043‐1065.

Barauskiene V, Rumbinaite E, Karuzas A, Martinkute E, Puodziukynas A. Importance of Heart Rate Variability in Patients with Atrial Fibrillation. J Cardiol Clin Res. 2016;4:1080.

Costa JYB, Anunciaçao PG, Ruiz RJ, Casonatto J, Polito MD. Effect of Caffeine Intake on Blood Pressure and Heart Rate Variability after a Single Bout of Aerobic Exercise. International SportMed Journal 2012; 13 (3): 109-121.

Hayano J, Yuda E. Pitfalls of assessment of autonomic function by heart rate variability. J Physiol Anthropol. 2019;38(1):3. Published 2019 Mar 13. doi:10.1186/s40101-019-0193-2

Shaffer, Fredric & Ginsberg, Jp. (2017). An Overview of Heart Rate Variability Metrics and Norms. Frontiers in Public Health. 5. 258. 10.3389/fpubh.2017.00258.

Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol (1987) 59:256–62. doi:10.1016/0002-9149(87)90795-8

Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol (1987) 59:256-62. doi:10.1016/0002-9149(87)90795-8

Gilgen-Ammann R, Schweizer T, Wyss T. RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. Eur J Appl Physiol. 2019;119(7):1525-1532. doi:10.1007/s00421-019-04142-5

T. K. Sahoo, A. Mahapatra and N. Ruban, "Stress Index Calculation and Analysis based on Heart Rate Variability of ECG Signal with Arrhythmia," 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), 2019, pp. 1-7, doi: 10.1109/i-PACT44901.2019.8959524.

Lundell, Richard & Tuominen, Laura & Ojanen, Tommi & Parkkola, Kai & Räisänen-Sokolowski, Anne. (2021). Diving Responses in Experienced Rebreather Divers: Short-Term Heart Rate Variability in Cold Water Diving. Frontiers in Physiology. 12. 10.3389/fphys.2021.649319.

Villafaina, S., Collado-Mateo, D., Domínguez-Muñoz, F. J., Gusi, N., & Fuentes-Garcia, J. P. (2020). Effects of exergames on heart rate variability of women with fibromyalgia: A randomized controlled trial. Scientific reports, 10(1), 5168. https://doi.org/10.1038/s41598-020-61617-8

Esco MR, Flatt AA. Ultra-short-term heart rate variability indexes at rest and post-exercise in athletes: evaluating the agreement with accepted recommen- dations. J Sports Sci Med (2014) 13:535–41.

DeGiorgio CM, Miller P, Meymandi S, Chin A, Epps J, Gordon S, et al. RMSSD, a measure of vagus-mediated heart rate variability, is associated with risk factors for SUDEP: the SUDEP-7 inventory. Epilepsy Behav (2010) 19(78–81):78–81. doi:10.1016/j.yebeh.2010.06.011

Von Rosenberg, W., Chanwimalueang, T., Adjei, T., Jaffer, U., Goverdovsky, V., & Mandic, D. P. (2017). Resolving Ambiguities in the LF/HF Ratio: LF-HF Scatter Plots for the Categorization of Mental and Physical Stress from HRV. Frontiers in physiology, 8, 360. https://doi.org/10.3389/fphys.2017.00360

Saboul, D., Pialoux, V., & Hautier, C. (2014). The breathing effect of the LF/HF ratio in the heart rate variability measurements of athletes. European journal of sport science, 14 Suppl 1, S282–S288. https://doi.org/10.1080/17461391.2012.691116

Kim D, Koo H, Lee W, Kim M (2014). Application and Limitation of Frequency Domain, LF/HF Component in Heart Rate Variability as an Acute Stress Index, Proceedings of the International Conference on Biomedical Engineering and Systems Prague, Czech Republic, August 14-15, Paper No: 128.

Fudim M, Qadri YJ, Ghadimi K, MacLeod DB, Molinger J, Piccini JP, Whittle J, Wischmeyer PE, Patel MR, Ulloa L. Implications for Neuromodulation Therapy to Control Inflammation and Related Organ Dysfunction in COVID-19. J Cardiovasc Transl Res. 2020 Dec;13(6):894-899.

Dos Santos CC, Shan Y, Akram A, Slutsky AS, Haitsma JJ. Neuroimmune regulation of ventilator-induced lung injury. Am J Respir Crit Care Med. 2011 Feb 15;183(4):471-82.

Larsen NW, Stiles LE, Miglis MG. Preparing for the long-haul: Autonomic complications of COVID- 19. Auton Neurosci. 2021 Nov;235:102841.

Davido B, Seang S, Tubiana R, de Truchis P. Post COVID-19 chronic symptoms: a postinfectious entity? Clin Microbiol Infect. 2020 Nov;26(11):1448-1449.

Berntson, G.G., Lozano, D.L. and Chen, Y.-J. (2005), Filter properties of root mean square successive difference (RMSSD) for heart rate. Psychophysiology, 42: 246-252. https://doi.org/10.1111/j.1469-8986.2005.00277.x

Vreijling, Sarah R. MSc; Troudart, Yael BSc; Brosschot, Jos F. PhD. Reduced Heart Rate Variability in Patients With Medically Unexplained Physical Symptoms: A Meta-Analysis of HF-HRV and RMSSD. Psychosomatic Medicine: January 2021 - Volume 83 - Issue 1 - p 2-15, doi: 10.1097/PSY.0000000000000874.

Mol, M., Strous, M., van Osch, F., Vogelaar, F. J., Barten, D. G., Farchi, M., Foudraine, N. A., & Gidron, Y. (2021). Heart-rate-variability (HRV), predicts outcomes in COVID-19. PloS one, 16(10), e0258841. https://doi.org/10.1371/journal.pone.0258841

Pan, Y., Yu, Z., Yuan, Y., Han, J., Wang, Z., Chen, H., Wang, S., Wang, Z., Hu, H., Zhou, L., Lai, Y., Zhou, Z., Wang, Y., Meng, G., Yu, L., & Jiang, H. (2021). Alteration of Autonomic Nervous System Is Associated With Severity and Outcomes in Patients With COVID-19. Frontiers in physiology, 12, 630038.

Ballering VA, Zon S, Hartman T, Rosmalen J (2022). Persistence of somatic symptoms after COVID-19 in the Netherlands: an observational cohort study, volüme 400, issue 10350, pp.452-461. https://doi.org/10.1016/S0140-6736(22)01214-4

Townsend L, Moloney D, Finucane C, McCarthy K, Bergin C, Bannan C, et al. (2021) Fatigue following COVID-19 infection is not associated with autonomic dysfunction. PLoS ONE 16(2): e0247280.

Lo YL. COVID-19, fatigue, and dysautonomia. J Med Virol. 2021 Mar;93(3):1213.

Barizien N, Le Guen M, Russel S, Touche P, Huang F, Vallée A. Clinical characterization of dysautonomia in long COVID-19 patients. Sci Rep. 2021 Jul 7;11(1):14042.

Johansson M, Ståhlberg M, Runold M, Nygren-Bonnier M, Nilsson J, Olshansky B, Bruchfeld J, Fedorowski A. Long-Haul Post-COVID-19 Symptoms Presenting as a Variant of Postural Orthostatic Tachycardia Syndrome: The Swedish Experience. JACC Case Rep. 2021 Apr;3(4):573-580.

Downloads

Published

2023-05-25

How to Cite

Perçin, A., Özden, A. V., & Pehlivanoğlu, B. E. (2023). Autonomic Nervous System Affection Due to Post-Covid Syndrome. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 10(27), 21–30. https://doi.org/10.5281/zenodo.7968870

Issue

Section

Articles