The Effect of Gyttja the Available Heavy Metal Content of Serpentine Soil


Abstract views: 111 / PDF downloads: 108

Authors

  • Zekeriya Kara Kahramanmaras Sutcu Imam University, Centre for Universty and Industry Collaboration (ÜSKİM), Soil Science and Plant Nutrition, Kahramanmaraş, Turkey https://orcid.org/0000-0001-7855-4968

DOI:

https://doi.org/10.5281/zenodo.7771542

Keywords:

Soil chemistry, heavy metal, gyttja

Abstract

In the research, the effect of gyttja  application on serpentine soils on heavy metal content of soils was investigated. In the study, 0, 1, 2 and 4% gyttja  was given to serpentine soils and the available heavy metal content of the soil was investigated according to time (2 months, 4 months and 6 months). The study was carried out according to the randomized plot design and was carried out in greenhouse conditions in three replications in pots. According to the results obtained, gyttja  applications increased soil variables such as organic matter, lime and pH. This increase was statistically significant compared to the control (p<0.01). On the other hand, the time dependent change for organic matter, lime and pH was statistically insignificant (p>0.01). Heavy metal (Ni, Cr, Pb, Cd and Co) contents in soil variables decreased depending on the gyttja  application. This decrease in heavy metals depending on the application was statistically significant (p<0.01). The time-dependent variation was statistically insignificant (p>0.01) for other heavy metal elements (Ni, Cr, Pb and Cd) except for available Co. After all, gyttja; serpentine not only improved the available heavy metal content of soils, but also increased the organic matter ratio. Therefore, gyttja, an organic regulator, can be recommended for soils rich in heavy metals and low in lime.

References

Alexander, E.B., Adamson, C., Zinke, P.J. & Graham, R.C. (1989). Soils and conifer forest productivity on serpentinized peridotite of the Trinity ophiolite, California: Soil Science, v. 148: 412-423.

Alparslan, M., Güneş, A. & İnal, A. (1998). Deneme Tekniği. Ankara Üniversitesi. Ziraat Fak. Yayın No: 1501, Ders Kitabı. No: 455. Ankara.

Alves, S., Trancoso, M.A., Goncalves, M.LS. & Dos Santos, M.MC. (2011). A nickel availability study in serpentinised areas of Portugal. Geoderma, 164: 155-163.

Becquer, T., Quantin, C., Sicot, M. & Boudot, J.P. (2003). Chromium availability in ultramafic soils from New Caledonia. Science of the Total Environment, 301(1-3): 251-261.

Bowen, H.JM. (1966). Trace element in Biochemistry, Academic Press, London.

Brady, K.U., Kruckeberg, A.R. & Bradshaw, H.D.Jr. (2005). Evolutionary ecology of plant adaptation to serpentine soils: Annual Review of Ecology Evolution and Systematics,

Brooks, R.R. (1987). Serpentine and its vegetation. A Multidisciplinary Approach. Dioscorides Press, Portland.

Carrigan, R.A. & Erwin, T.C. (1951). Cobalt Determination in Soils by Spectrographic Analysis Following Chemical Preconcentration. Proc. Soil Science Society of America 15: 145- 149

Chapman, H.D. (1971). Proc. Intern. Symp. Soil Fert. Evaln. New Delhi 1:927-947.

Cheng, C.H., Jien, S.H., Iizuka, Y., Tsai, H., Chang, Y.H. & Hseu, Z.Y. (2011). Pedogenic chromium and nickel partitioning in serpentine soils along a toposequence. Soil Science Society of America Journal, 75 (2): 659-668.

Echevarria, G. (2018). Genesis and behaviour of ultramafic soils and consequences for nickel biogeochemistry. In: van der Ent, A., Echevarria, G., Baker, A.J.M., Morel, J.L. (Eds.), Agromining: Extracting Unconventional Resources From Plants, Mineral Resource Reviews Series.

Gerendas, J., Polacco, J.C., Freyermuth, S.K. & Sattelmacher, B. (1999). Significance of nickel for plant growth and metabolism. J. Plant Nutr. Soil Sci. 162: 241Z 256.

Gough, L.P., Meadows, G.R., Jackson, L.L. & Dudka, S. (1989). Biogeochemistry of a highly serpentinized, chromite-rich ultramafic area, Tehama County, California: U.S. Geological Survey Bulletin 1901, p. :1-24.

Helmke, P.A. & Sparks, D.L. (1996). Lithium, Sodium, Potassium, Rubidium and Cesium. In: methods of Soil Analysis Part 3: Chemical Methods, Sparks, D.L. (Eds). Soil Science Society of America, Madison, WI, USA., ISBN: 0891188258, pp: 551-574.

Hotz, P.E. (1964). Nickeliferous laterites in southwestern Oregon and northwestern California. Economic Geology, 59: 355-396.

JMP, (2007). JMP User Guide 7.0v, SAS Institute Inc., Cary, NC, USA, ISBN 978-1-59994-408-1.

Kabata-Pendias, A. & Mukherjee, A. (2007). Trace Elements From Soil to Human. Springer Berlin Heidelberg New York, 294-305.

Kaçar, B. (1994). Bitki ve toprağın kimyasal analizleri: III. Toprak Analizleri. A.Ü. Ziraat Fak. Eğitim Araştırma ve Geliştirme Vakfı Yayınları, Ankara, 705.

Kara, Z., Rızaoğlu, T. & Saltalı, K. (2018). The Physical Characteristics of Peridotite and Amphibolite Based Soils from Kahramanmaraş, Se Anatolia-Turkey. 18th International Multidisciplinary Scientific GeoConference, Bulgaria, Proceedings Book: 627-633

Kara, Z. (2019). Kahramanmaraş Bölgesinde Ofiyolitik Topluluğun Farklı Kesimlerini Temsil Eden Kayaçlar İle Üzerinde Oluşan Toprakların Asbest Mineral İçeriklerinin ve Jeokimyasal Özelliklerinin Araştırılması, Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü Toprak Bilimi ve Bitki Besleme Bölümü, Doktora Tezi, Kahramanmaraş, 243 sy.

Kara, Z., Rızaoğlu, T. & Saltalı, K. (2018). Total heavy metal contents in serpentinite soils from Türkoğlu-Kahramanmaraş. 18th International Multidisciplinary Scientific GeoConference, Bulgaria, Proceedings Book: 659-665 vol. 18, Iss.3.2 DOI: 10.5593/sgem2018/3.2/S13.085

Karaca A, Turgay, O.C. & Tamer, N. (2006). Effects of a humic deposit (gidya) on soil chemical and microbiological properties and heavy metal availability. Biol Fertil Soils. 42: 585–592.

Kaupenjohann, M. & Wilcke, W. (1995). Heavy metal release from a serpentine soil using a pH-stat technique. Soil Science Society of America Journal, 59: 1027-1031.

Kazakou, E., Dimitrakopoulos, P.G., Baker, A.J., Reeves, R.D. & Troumbis, A.Y. (2008). Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev 83:495-508.

Kruckeberg, A.R. (2004). Geology and plant life: the effects of landforms and rock types on plants. University of Washington press, Seattle.

Lindsay, W.L. & Norvel, W.A. (1978). Development of DTPA Soil Test for Zn, Fe, Mn and Cu. Soil Sci. Amer. J. 42(3), 421-28.

Nelson D.W & Sommers, L.E. (1996). Total Carbon, Organic Carbon, and Organic Matter. in D.L. Sparks (Eds) Methods of Soil Analysis, Part 3, Chemical Methods, SSSA Book Series Number 5, SSSA., Madison,WI, P: 961 1011. Odin, S., Huminsauren. Th. Steinkopff, Dresden und Leipzig, 1922, 199 pp.

O'Dell, R.E. & Claassen, V.P. (2006a). Relative performance of native and exotic grass species in response to amendment of drastically disturbed serpentine substrates. J Appl Ecol 43 (5): 898-908

O'Dell, R.E. & Claassen, V.P. (2006b). Serpentine and nonserpentine Achillea millefolium accessions differ in serpentine substrate tolerance and response to organic and inorganic amendments. Plant Soil 279: 253-259

Olsen, S.R., Cole, C.V. ,Watanabe, FS. & Dean, LA. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate US Dept. Agric. Cric. 939.

Oze, C., Fendorf. S., Bird, D.K. & Coleman, R.G. (2004a). Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. American Journal of Science, 304: 67-101.

Oze, C., Schroth, A.W. & Coleman, R.G. (2008). Growing up Green on Serpentine Soils: Biogeochemistry of Serpentinite Vegetation in the Central Coast Range of California. Applied Geochemistry, 23: 3391-3403

Palm, E.R. & Volkenburgh, E.V. (2014). Physiological Adaptations of Plants to Serpentine Soil.

Proctor, J. (2003). Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspect Plant Ecol Evol Syst 6: 105-124

Proctor, J., Argent, G.C. & Madulid, D.A. (1998). Forests of the ultramafic Mount Giting-Giting, Sibuyan Island, Philippines. Edinb J Bot 55: 295-316

Rajabzadeh, M.A., Ghasemkhani, E. & Khosravi, A. (2015). Biogeochemical study of chromite bearing zones in Forumad area, Sabzevar ophiolite, Northeastern Iran, J. Geochem. Explor. http://dx.doi.org/10.1016/j.gexplo.2015.01.002.

Rajakaruna, N. & Bohm, B.A. (2002). Ultramafic and its vegetation: a preliminary study from Sri Lanka. J Appl Bot Angew Bot 76: 20-28

Rajapaksha, A.U., Vithanage, M., Oze, C., Bandara, W. & Weerasooriya, R. (2012). Nickel and manganese release in serpentine soil from the Ussangoda Ultramafic Complex, Sri Lanka. Geoderma, 189: 1-9.

Sağlam, T. (2008). Toprak Kimyası. Namık Kemal Üni. Zir. Fak. Yayın No:1, S 94, Tekirdağ.

Saltalı, K. & Kara, Z. (2022). Effects of gyttja applications on some chemical properties of acidic soils. KSÜ Tarım ve Doğa Dergisi, 25(2): 374 - 379

Schreier, H., Omueti, J.A. & Lavkulich, L.M. (1987). Weathering processes of asbestos-rich serpentinitic sediments. Soil Science Society of America Journal, 51: 993-999.

Schwertmann, U. & Latham, M. (1986). Properities of iron oxides in some New Caledonian Oxisols. Geoderma, 39: 105-123.

Thomas, G.W. (1996). Soil pH and Acidity. pp: 475-491. In D.L. Sparks (ed) Method of Soil Analysis: Chemical Methods. Part 3. SSSA, Madison, WI.

Ülgen, N. & Yurtseven, N. (1988). Türkiye Gübre ve Gübreleme rehberi. Köy Hizmetleri Genel Müdürlüğü, Toprak ve Gübre Araş. Ens. Müd. Yayınları. Genel Yayın No:151. Ankara

Vithanage, M., Rajapaksha, A.U., Oze, C., Rajakaruna, N. & Dissanayake, C.B. (2014). Metal release from serpentine soils in Sri Lanka. Environmental Monitoring and Assessment;186 (6): 3415-3429

Xhaferrı, B., Banı, A., Echevarrıa, G. & Gjeta, E. (2017). Variation in nickel accumulation in organs of Alyssum murale from serpentine site of Albania. Albanian j. agric. sci., Agricultural University of Tirana.

Published

2023-03-25

How to Cite

Kara, Z. (2023). The Effect of Gyttja the Available Heavy Metal Content of Serpentine Soil. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 10(26), 29–36. https://doi.org/10.5281/zenodo.7771542

Issue

Section

Articles