Post-Covid Sendromunda Otonomik Sinir Sistemi Etkilenimi
Özet Görüntüleme: 277 / PDF İndirme: 149
DOI:
https://doi.org/10.5281/zenodo.7968870Anahtar Kelimeler:
Autonomic Nervous System Disorders, Heart Rates, Long COVID, Post-Acute COVID syndromeÖzet
Covid-19'lu bireylerde semptomların 12 hafta veya daha uzun süre devam etmesi ile buna benzer çok çeşitli semptomların varlığı otonom sinir sisteminin (OSS) etkilenebileceğini düşündürmektedir. Bu çalışmanın amacı, Kalp Hızı Değişkenliğini ölçerek Post Covid sendromu (PKS) ile OSS bozuklukları arasındaki olası ilişkiyi ortaya koymaktır. Çalışmaya 18-45 yaş arası toplam 60 katılımcı dahil edilerek üç gruba ayrıldı: Grup 1 (hiç Post-Covid Sendromu geçirmemiş katılımcılar), Grup 2 (Covid-19 sonrası iyileşmiş katılımcılar) ve Grup 3 (hiç Covid-19 enfeksiyonu geçirmemiş katılımcılar). Her gruptaki hastalar için dinlenme pozisyonunda 5 dakikalık kalp hızı değişkenlik ölçümü yapıldı. Grup 1'de istatistiksel olarak anlamlı düşük Stres İndeksi skoru bulundu (p<0.05). Grup 1'de Sempatik Sinir Sistemi indeksinde anlamlı bir düşük ölçüm gözlenirken (p<0.05), PKS deneyimi olan katılımcılardan oluşan Grup 3'te (p<0.05) anlamlı bir yüksek puan gözlendi. RMSSD ve HF değişkeninde Grup 3'te anlamlı düşük puanlar gözlemlendi (p<0.05). Bu çalışma sonucunda, hiç Covid 19 enfeksiyonu geçirmemiş ve Covid 19 enfeksiyonundan sonra iyileşmiş bireylere kıyasla, PKS'li katılımcılarda sempatik aktivite baskınlığının açıkça ortaya çıktığı ve otonomik disfonksiyona neden olduğu gözlenmiştir.
Referanslar
Greenhalgh, T.; Knight, M.; A’Court, C.; Buxton, M.; Husain, L. Management of post-acute COVID-19 in primary care. BMJ 2020, 370, m3026.https://doi.org/10.1136/bmj.m3026
National Insitute for Health and Care Excellence; SIGN. Royal College of General Practitioners COVID-19 Guideline Scope: Management of the Long-Term Effects of COVID-19; NICE: London, UK, 2020; pp. 1–7.
Cares-MarambioK,Montenegro-JimenezY,Torres-Castro R, et al. Prevalence of potential respiratory symptoms in survivors of hospital admission after coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Chron Respir Dis. 2021;18:14799731211002240.
Konig MF, Powell M, Staedtke V, et al. Preventing cytokine storm syndrome in COVID-19 using α-1 adrenergic receptor antagonists. J Clin Invest. 2020;130(7):3345-3347. doi:10.1172/JCI139642
Goldstein DS. The extended autonomic system, dyshomeostasis, and COVID-19. Clin Auton Res 2020;30:299–315.
Dani M, Dirksen A, Taraborrelli P, et al. Autonomic dysfunction in 'long COVID': rationale, physiology and management strategies. Clin Med (Lond). 2021;21(1):e63-e67. doi:10.7861/clinmed.2020-0896
McCorry LK. Physiology of the autonomic nervous system. Am J Pharm Educ. 2007 Aug 15;71(4):78.
Tindle J, Tadi P. Neuroanatomy, Parasympathetic Nervous System. [Updated 2021 Nov 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan.
Malik M. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93:1043‐1065.
Barauskiene V, Rumbinaite E, Karuzas A, Martinkute E, Puodziukynas A. Importance of Heart Rate Variability in Patients with Atrial Fibrillation. J Cardiol Clin Res. 2016;4:1080.
Costa JYB, Anunciaçao PG, Ruiz RJ, Casonatto J, Polito MD. Effect of Caffeine Intake on Blood Pressure and Heart Rate Variability after a Single Bout of Aerobic Exercise. International SportMed Journal 2012; 13 (3): 109-121.
Hayano J, Yuda E. Pitfalls of assessment of autonomic function by heart rate variability. J Physiol Anthropol. 2019;38(1):3. Published 2019 Mar 13. doi:10.1186/s40101-019-0193-2
Shaffer, Fredric & Ginsberg, Jp. (2017). An Overview of Heart Rate Variability Metrics and Norms. Frontiers in Public Health. 5. 258. 10.3389/fpubh.2017.00258.
Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol (1987) 59:256–62. doi:10.1016/0002-9149(87)90795-8
Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol (1987) 59:256-62. doi:10.1016/0002-9149(87)90795-8
Gilgen-Ammann R, Schweizer T, Wyss T. RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. Eur J Appl Physiol. 2019;119(7):1525-1532. doi:10.1007/s00421-019-04142-5
T. K. Sahoo, A. Mahapatra and N. Ruban, "Stress Index Calculation and Analysis based on Heart Rate Variability of ECG Signal with Arrhythmia," 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), 2019, pp. 1-7, doi: 10.1109/i-PACT44901.2019.8959524.
Lundell, Richard & Tuominen, Laura & Ojanen, Tommi & Parkkola, Kai & Räisänen-Sokolowski, Anne. (2021). Diving Responses in Experienced Rebreather Divers: Short-Term Heart Rate Variability in Cold Water Diving. Frontiers in Physiology. 12. 10.3389/fphys.2021.649319.
Villafaina, S., Collado-Mateo, D., Domínguez-Muñoz, F. J., Gusi, N., & Fuentes-Garcia, J. P. (2020). Effects of exergames on heart rate variability of women with fibromyalgia: A randomized controlled trial. Scientific reports, 10(1), 5168. https://doi.org/10.1038/s41598-020-61617-8
Esco MR, Flatt AA. Ultra-short-term heart rate variability indexes at rest and post-exercise in athletes: evaluating the agreement with accepted recommen- dations. J Sports Sci Med (2014) 13:535–41.
DeGiorgio CM, Miller P, Meymandi S, Chin A, Epps J, Gordon S, et al. RMSSD, a measure of vagus-mediated heart rate variability, is associated with risk factors for SUDEP: the SUDEP-7 inventory. Epilepsy Behav (2010) 19(78–81):78–81. doi:10.1016/j.yebeh.2010.06.011
Von Rosenberg, W., Chanwimalueang, T., Adjei, T., Jaffer, U., Goverdovsky, V., & Mandic, D. P. (2017). Resolving Ambiguities in the LF/HF Ratio: LF-HF Scatter Plots for the Categorization of Mental and Physical Stress from HRV. Frontiers in physiology, 8, 360. https://doi.org/10.3389/fphys.2017.00360
Saboul, D., Pialoux, V., & Hautier, C. (2014). The breathing effect of the LF/HF ratio in the heart rate variability measurements of athletes. European journal of sport science, 14 Suppl 1, S282–S288. https://doi.org/10.1080/17461391.2012.691116
Kim D, Koo H, Lee W, Kim M (2014). Application and Limitation of Frequency Domain, LF/HF Component in Heart Rate Variability as an Acute Stress Index, Proceedings of the International Conference on Biomedical Engineering and Systems Prague, Czech Republic, August 14-15, Paper No: 128.
Fudim M, Qadri YJ, Ghadimi K, MacLeod DB, Molinger J, Piccini JP, Whittle J, Wischmeyer PE, Patel MR, Ulloa L. Implications for Neuromodulation Therapy to Control Inflammation and Related Organ Dysfunction in COVID-19. J Cardiovasc Transl Res. 2020 Dec;13(6):894-899.
Dos Santos CC, Shan Y, Akram A, Slutsky AS, Haitsma JJ. Neuroimmune regulation of ventilator-induced lung injury. Am J Respir Crit Care Med. 2011 Feb 15;183(4):471-82.
Larsen NW, Stiles LE, Miglis MG. Preparing for the long-haul: Autonomic complications of COVID- 19. Auton Neurosci. 2021 Nov;235:102841.
Davido B, Seang S, Tubiana R, de Truchis P. Post COVID-19 chronic symptoms: a postinfectious entity? Clin Microbiol Infect. 2020 Nov;26(11):1448-1449.
Berntson, G.G., Lozano, D.L. and Chen, Y.-J. (2005), Filter properties of root mean square successive difference (RMSSD) for heart rate. Psychophysiology, 42: 246-252. https://doi.org/10.1111/j.1469-8986.2005.00277.x
Vreijling, Sarah R. MSc; Troudart, Yael BSc; Brosschot, Jos F. PhD. Reduced Heart Rate Variability in Patients With Medically Unexplained Physical Symptoms: A Meta-Analysis of HF-HRV and RMSSD. Psychosomatic Medicine: January 2021 - Volume 83 - Issue 1 - p 2-15, doi: 10.1097/PSY.0000000000000874.
Mol, M., Strous, M., van Osch, F., Vogelaar, F. J., Barten, D. G., Farchi, M., Foudraine, N. A., & Gidron, Y. (2021). Heart-rate-variability (HRV), predicts outcomes in COVID-19. PloS one, 16(10), e0258841. https://doi.org/10.1371/journal.pone.0258841
Pan, Y., Yu, Z., Yuan, Y., Han, J., Wang, Z., Chen, H., Wang, S., Wang, Z., Hu, H., Zhou, L., Lai, Y., Zhou, Z., Wang, Y., Meng, G., Yu, L., & Jiang, H. (2021). Alteration of Autonomic Nervous System Is Associated With Severity and Outcomes in Patients With COVID-19. Frontiers in physiology, 12, 630038.
Ballering VA, Zon S, Hartman T, Rosmalen J (2022). Persistence of somatic symptoms after COVID-19 in the Netherlands: an observational cohort study, volüme 400, issue 10350, pp.452-461. https://doi.org/10.1016/S0140-6736(22)01214-4
Townsend L, Moloney D, Finucane C, McCarthy K, Bergin C, Bannan C, et al. (2021) Fatigue following COVID-19 infection is not associated with autonomic dysfunction. PLoS ONE 16(2): e0247280.
Lo YL. COVID-19, fatigue, and dysautonomia. J Med Virol. 2021 Mar;93(3):1213.
Barizien N, Le Guen M, Russel S, Touche P, Huang F, Vallée A. Clinical characterization of dysautonomia in long COVID-19 patients. Sci Rep. 2021 Jul 7;11(1):14042.
Johansson M, Ståhlberg M, Runold M, Nygren-Bonnier M, Nilsson J, Olshansky B, Bruchfeld J, Fedorowski A. Long-Haul Post-COVID-19 Symptoms Presenting as a Variant of Postural Orthostatic Tachycardia Syndrome: The Swedish Experience. JACC Case Rep. 2021 Apr;3(4):573-580.
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Telif Hakkı (c) 2023 Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences
Bu çalışma Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.