Investigation of Mechanical Properties of FDM Materials Produced with SiO2 Reinforced PLA Filaments

Özet Görüntüleme: 84 / PDF İndirme: 31



Anahtar Kelimeler:

Silicon dioxide (SiO2), PLA (Polylactic acid) filament, FDM, 3D printer, Tensile test, Mechanical characterization


Recently, FDM printers have taken their place in many places from workplaces to homes. Polymer-based filaments are used in these printers. The wide variety of polymers also increases the variety of products that can be used in FDM printers. For this reason, many studies are carried out in this field to ensure the production of parts with better mechanical properties, better surface quality and to use 3D printing capabilities in specific applications. In this study, the effect of SiO2 composition on PLA-based filaments on the mechanical properties of the materials produced using these filaments was investigated. SiO2 reinforced PLA filaments are produced with 10, 20 and 30 wt% SiO2 reinforcement. Tensile specimens with 100% fill rate and grid fill shape were produced from this composite filament. The test results showed that SiO2 reinforcement decreased the yield and tensile strength values ​​and elastic modulus of the materials, but increased the toughness values.


Attaran, M. (2017). The rise of 3-D printing : The advantages of additive manufacturing over traditional manufacturing. Business Horizons, 60(5), 677–688.

Bacak, S., Varol Özkavak, H., & Tatlı, M. (2021). Investıgatıon of the effect of processıng parameters on tensıle propertıes of pla samples produced by fdm method. Journal of Engineering Sciences and Design, 9(1), 209–216.

Bedi, P., Singh, R., & Ahuja, I. P. S. (2018). Effect of SiC / Al 2 O 3 particle size reinforcement in recycled LDPE matrix on mechanical properties of FDM feed stock filament. 2759.

Dudek, P. (2013). Agh university of science and technology, faculty of mechanical engineering and robotics, al. a. mickiewicza 30, 30-059 kraków, poland.

Evlen, H., Özdemİr, M. A., & Çalişkan, A. (2019). Effects of filling percentage on mechanical properties of PLA and PET materials. 0900(4), 1031–1037.

Günay, M., Gündüz, S., Yilmaz, H., & Yaşar, N. (2020). Optimization of 3D printing operation parameters for tensile strength in PLA based sample. JOURNAL of POLYTECHNIC, 23(1), 73–79.

Ivanov, E., Kotsilkova, R., Xia, H., Chen, Y., Donato, R. K., Donato, K., Godoy, A. P., Maio, R. Di, Silvestre, C., Cimmino, S., & Angelov, V. (2019). applied sciences PLA / Graphene / MWCNT Composites with Improved Electrical and Thermal Properties Suitable for FDM 3D Printing Applications.

Jacobsen, S., Fritz, H. G., & Jerome, R. (1999). Polylactide (PLA)-A New Way of Production +. Polymer Engıneerıng and Scıence, 39(7), 1311–1319.

Kristiawan, R. B., Imaduddin, F., & Ariawan, D. (2021). A review on the fused deposition modeling ( FDM ) 3D printing : Filament processing , materials , and printing parameters. 639–649.

Kumar, A., Equbal, A., Toppo, V., Ohdar, R. K., & Mahapatra, S. S. (2012). CIRP Journal of Manufacturing Science and Technology An investigation on sliding wear of FDM built parts. CIRP Journal of Manufacturing Science and Technology, 5(1), 48–54.

Letcher, T. (2015). IMECE2014-39379 Material property testing of 3D-printed specimen in pla on an entry-level 3D prınter. February.

Liu, Wenbo, Wu, N., & Pochiraju, K. (2018). Shape recovery characteristics of SiC / C / PLA composite fi laments and 3D printed parts. Composites Part A, 108(October 2017), 1–11.

Liu, Wenjie, Zhou, J., Ma, Y., Wang, J., & Xu, J. (2017). Fabrication of PLA Filaments and its Printable Performance Fabrication of PLA Filaments and its Printable Performance. 1–7.

Odent, J., Raquez, J. M., Hakim, R. H., Cailloux, J., Santana, O. O., Bou, J., S, M., Dubois, P., Carrasco, F., & Maspoch, M. L. (2017). PLA / SiO 2 composites : Influence of the filler modifications on the morphology , crystallization behavior , and mechanical properties. 45367, 9–11.

Öz, Ö., & Öztürk, F. H. (2022). Investigation of the effects of printing angle on mechanical properties of PLA specimen fabricated with 3D printer by using experimental and finite elements method. Journal of Polytechnıc, 1(1), 0–14.

Popescu, D., Zapciu, A., Amza, C., Baciu, F., & Marinescu, R. (2018). FDM process parameters in fl uence over the mechanical properties of polymer specimens : A review. 69(May), 157–166.

Sodeifian, G., Ghaseminejad, S., & Akbar, A. (2019). Results in Physics Preparation of polypropylene / short glass fiber composite as Fused Deposition Modeling ( FDM ) filament. Results in Physics, 12(November 2018), 205–222.

Thiago, R., Ferreira, L., Amatte, I. C., & Daniel, B. (2017). Experimental characterization and micrography of 3D printed. May.

Uzun, M., & Erdoğdu, Y. E. (2020). Investigation of the Effect of Using Unreinforced and Reinforced PLA in Production by Fused Deposition Modeling on Mechanical Properties. Journal of the Institute of Science and Technology, 10(4), 2800–2808.



Nasıl Atıf Yapılır

Yasan, Ömer B., Göçer, A., & Yılmaz, E. (2022). Investigation of Mechanical Properties of FDM Materials Produced with SiO2 Reinforced PLA Filaments. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 9(22), 104–112.