Reuse of Shipping Containers in the Context of Energy Efficiency: A Life Cycle Assessment Example to Determine Wall Configurations
Abstract views: 28 / PDF downloads: 24
DOI:
https://doi.org/10.5281/zenodo.14227499Keywords:
Life Cycle Assessment, Shipping Containers, Waste Management, Resource Conservation, ReuseAbstract
The reuse of shipping containers, which have completed their task of freight transportation, as prefabricated and modular building units, by adapting them in the factory and reusing them in architecture has been frequently encountered recently. However, a number of features arising from their production indicate the importance of the decisions to be taken in their adaptation in the factory. In addition, in order to provide maximum “environmental benefit” with this solution developed on the basis of providing “waste management” and “resource conservation”, the environmental effects of additional building materials needed in their adaptation should be examined. Accordingly, in this study, container wall configurations created with different assembly scenarios for use in container houses to be implemented in Samsun were compared in terms of environmental preferability. The comparison was carried out with the “life cycle assessment” method, which helps decision makers to compare all important environmental impacts when choosing between alternative courses of action. For this, first of all; the construction materials that can be used were selected from the “Ecoinvent 3.8” database, distribution methods were checked, deficiencies, if any, were added and differences were adapted. Then, different assembly scenarios were created. Then, all the arranged construction material data were associated with the functional unit in the assembly scenarios that provide the same functional basis. In this direction; based on the minimum limit that the wall element should provide for the degree day zone where it will be applied according to TS 825, the building material thicknesses to be used in each scenario were calculated and their quantities were determined with m2 conversions. Finally; the impact assessment of all the architectural configurations created with the assembly scenarios was carried out at two different levels with the “ReCiPe 2016 V1.07” method within the “SimaPro PhD 9.4.0.2” software tool. At the end of the study, both the container wall configuration that provides the best performance by providing the lowest environmental impact was obtained and the quantitative environmental impacts of this configuration were determined. The study results are expected to increase awareness of the importance of life cycle assessment in shell designs.
References
Altun, M., Akgül, Ç. M., Akçamete, A. (2020). Kabuk yalıtımının bina ısıtma enerjisi ihtiyacına, maliyetine ve karbon ayak izine etkisinin yaşam döngüsü bakış açısıyla değerlendirmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(1), 147-164. doi:10.17341/gazimmfd.445751
Bertolini, M. and Guardigli, L. (2020). Upcycling shipping containers as building components: An environmental impact assessment. The International Journal of Life Cycle Assessment, 25(6), 947-963. doi: 10.1007/s11367-020-01747-3
Curran, M. A. (2008). Life-Cycle Assessment. In S. E. Jorgensen and B. Fath (Eds.), Encyclopedia of Ecology; Subject Area: Human Ecology. Amsterdam, Netherlands: Elsevier BV, pp. 2168-2174.
Çağlar, T. ve Esmer, S. (2015). Türkiye’de boş konteynerlerin yeniden konumlandırılması sorunu üzerine nitel bir araştırma. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 12(31), 242-256.
Dara, C., Hachem-Vermette, C., and Assefa, G. (2019). Life cycle assessment and life cycle costing of container-based single-family housing in Canada: A case study. Building and Environment, 163: 106332. doi: 10.1016/j.buildenv.2019.106332
İslam, H., Zhang, G., Setunge, S., and Bhuiyan, M. (2016). Life cycle assessment of shipping container home: A sustainable construction. Energy and Buildings, 128, 673-685. doi:10.1016/j.enbuild.2016.07.002
Kamazaraly, M. A., Xu, T. H., and Yaakob, A. M. (2017). A feasibility study on container construction in Malaysia. Journal of Built Environment, Technology and Engineering, 3(September), 110-119.
Moore, C. M., Yıldırım, S. G., and Baur, S. W. (2015). Educational adaptation of cargo container design features. In 2015 ASEE Zone III Conference (Gulf Southwest – Midwest – North Midwest Sections). Springfield, Missouri.
Peña, J. A. and Schuzer, K. (2012). Design of reusable emergency relief housing units using general-purpose (GP) shipping containers. International Journal Of Engineering Research and Innovation, 4(2), 55-64.
Rodriguez, J. P., Comtois, C., and Slack, B. (2013). The geography of transport systems (Third edition). New York: Routledge.
Satola, D., Kristiansen, A. B., Houlihan-Wiberg, A., Gustavsen, A., Ma, T., and Wang, R. Z. (2020). Comparative life cycle assessment of various energy efficiency designs of a container-based housing unit in China: A case study. Building and Environment, 186: 107358. doi: 10.1016/j.buildenv.2020.107358
Sevim Koşan, N. ve Beyhan, F. (2023). Atık standart nakliye konteynerinin mimari hacim bağlamında toksisite durumu üzerine bir araştırma. 9.Uluslararası Mimarlık ve Tasarım Kongresi Tam Metin Bildiriler Kitabı. İstanbul: Güven Plus Grup A.Ş. Yayınları, 332-340.
TSE. (2013). TS 825: Binalarda Isı yalıtım kuralları. Ankara: TSE, 1-83.
Arslan, M. A. ve Aktaş, M. (2018). İnşaat Sektöründe Kullanılan Yalıtım Malzemelerinin Isı ve Ses Yalıtımı Açısından Değerlendirilmesi. Politeknik Dergisi, 2018, 21(2), 299-320. doi: 10.2339/politeknik.407257
Bowley, W. and Mukopadhyaya, P. (2019). Effect of different climates on a shipping Container passive house in Canada. Journal of Green Building, 14(4), 133-153. doi: 10.3992/1943-4618.14.4.133
Kemaneci, H. İ. (2019). Seramik Karolarda Isıl Konfor ve Enerji Analizi. Yüksek Lisans Tezi, Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü, Kütahya, 15.
Sümer, H. (2019). Malzemelerin ve Gazların Isıl İletkenliği. [Web log post]. URL: https://argevetasarim.com/malzemelerin-ve-gazlarin-isil-iletkenligi/ Son Erişim Tarihi: 13.01.2024.
Url-1, Polisan Home Cosmetics: Elegans Extra Yarı Mat. URL: https://www.polisan.com.tr/elegans-extra-yari-mat_p135 Son Erişim Tarihi: 10.02.2023.
Url-2, Dalsan: Satentek- Saten Perdah Alçısı. URL: http://www.dalsan.com.tr/CmsFiles/Documents/TDS_satentek_foy_tr.pdf Son Erişim Tarihi: 11.05.2023.
Url-3, Tepe Betopan: Doküman Merkezi. URL: https://www.betopan.com.tr/tr/dokuman-merkezi Son Erişim Tarihi: 11.05.2023.
Url-4, Pulver: Broşürler. URL: https://pulver.com.tr/brochures/ Son Erişim Tarihi: 11.05.2023.
Url-5, Dalsan: Bordo Corex. URL: https://dalsan.com.tr/UrunDetay/Index/24 Son Erişim Tarihi: 11.05.2023.
Url-6, Adım Plywood: Kontrplak. URL: https://adimplywood.com/urunler/kontrplak/ Son Erişim Tarihi: 11.08.2023.
Url-7, Egger: Egger OSB 3. URL: https://www.egger.com/tr/building/product-detail/OSB3?country=TR Son Erişim Tarihi: 13.05.2023.
Url-8, Fixa Yapı Kimyasalları: Akrilan 200. URL: https://www.fixa.com.tr/akrilan-200/ Son Erişim Tarihi: 18.05.2023.
Url-9, Polisan Home Cosmetics: Polimetal Düz. URL: https://www.polisan.com.tr/polimetal-duz_p195 Son Erişim Tarihi: 11.05.2023.
Url-10, Expafol: EVA 100 Serisi. URL: https://expafol.com/en/products/eva-2/ Son Erişim Tarihi: 11.05.2023.
Url-11, İnceten Yalıtım. URL: https://www.inceten.com/wp-content/uploads/2015/06/Izocam-XPS-Tip-ve-Yogunluk-Tablosu.pdf Son Erişim Tarihi: 11.05.2023.
Url-12, Epsa Yalıtım-Yapı Kimyasalları. URL: https://epsa.com.tr/wp-content/uploads/2024/01/EPSA-KATALOG.pdf Son Erişim Tarihi: 11.05.2023.
Url-13, Yapiloji. URL: https://yapiloji.com.tr/picture/ode-yapi_yalitim_brosurupdf.pdf Son Erişim Tarihi: 22.07.2023.
Url-14, Konyil: Ravaber Taşyünü. URL: https://www.konyil.com.tr/images/urun/ravaber/ravaber.pdf Son Erişim Tarihi: 17.04.2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.