INVESTIGATION OF THE EFFECTS OF TOOL WEAR ON TEMPERATURE AND SURFACE ROUGHNESS VALUE IN THE DIN 1.2343 MATERIAL MACHINING
Abstract views: 14 / PDF downloads: 9
Keywords:
DIN 1.2343, hard turning, tool wear, surface roughnessAbstract
Turning of materials above 45 HRC Hardness is defined as hard turning. After the workpiece material
is hardened by heat treatment, abrasion resistance increases according to the place of use. But
hardening materials are very difficult for machining. Hard turning is also a finish turning process.
Therefore, it must have very good surface quality. Good surface quality and low tool wear are
desirable during the hard turning. Thus, the reduces frictional losses. In this experimental study, the
material of DIN 1.2343 is machined with a hard metal insert. Wear of the tools formed during
machining; temperature, sound intensity and surface roughness values were investigated. Accordingly
experimental result, the amount of wear increases, the sound intensity increases, the surface roughness
value deteriorates and the temperature increases.
References
Newman, S. T., Nassehi, A., Imani-Asrai, R. & Dhokia, V. Energy efficient process planning for
CNC machining. CIRP J. Manuf. Sci. Technol. (2012). doi:10.1016/j.cirpj.2012.03.007
Mori, M., Fujishima, M., Inamasu, Y. & Oda, Y. A study on energy efficiency improvement for
machine tools. CIRP Ann. - Manuf. Technol. (2011). doi:10.1016/j.cirp.2011.03.099
Kant, G. & Sangwan, K. S. Prediction and optimization of machining parameters for minimizing
power consumption and surface roughness in machining. J. Clean. Prod. (2014).
doi:10.1016/j.jclepro.2014.07.073
Zhao, G. Y., Liu, Z. Y., He, Y., Cao, H. J. & Guo, Y. B. Energy consumption in machining:
Classification, prediction, and reduction strategy. Energy (2017). doi:10.1016/j.energy.2017.05.110
Zhou, L. et al. Energy consumption model and energy efficiency of machine tools: A
comprehensive literature review. Journal of Cleaner Production (2016).
doi:10.1016/j.jclepro.2015.05.093
Balogun, V. A. & Mativenga, P. T. Modelling of direct energy requirements in mechanical
machining processes. J. Clean. Prod. (2013). doi:10.1016/j.jclepro.2012.10.015
Behrendt, T., Zein, A. & Min, S. Development of an energy consumption monitoring procedure for
machine tools. CIRP Ann. - Manuf. Technol. (2012). doi:10.1016/j.cirp.2012.03.103
Peng, T. & Xu, X. Energy-efficient machining systems: A critical review. International Journal of
Advanced Manufacturing Technology (2014). doi:10.1007/s00170-014-5756-0
Kumar, R. & Chauhan, S. Study on surface roughness measurement for turning of Al 7075/10/SiCp
and Al 7075 hybrid composites by using response surface methodology (RSM) and artificial neural
networking (ANN). Meas. J. Int. Meas. Confed. (2015). doi:10.1016/j.measurement.2015.01.003
Sharma, V. S., Dhiman, S., Sehgal, R. & Sharma, S. K. Estimation of cutting forces and surface
roughness for hard turning using neural networks. J. Intell. Manuf. (2008). doi:10.1007/s10845-
-0097-1
Lalwani, D. I., Mehta, N. K. & Jain, P. K. Experimental investigations of cutting parameters
influence on cutting forces and surface roughness in finish hard turning of MDN250 steel. J. Mater.
Process. Technol. (2008). doi:10.1016/j.jmatprotec.2007.12.018
Nalbant, M., Gökkaya, H. & Sur, G. Application of Taguchi method in the optimization of cutting
parameters for surface roughness in turning. Mater. Des. (2007). doi:10.1016/j.matdes.2006.01.008
Özel, T., Hsu, T. K. & Zeren, E. Effects of cutting edge geometry, workpiece hardness, feed rate
and cutting speed on surface roughness and forces in finish turning of hardened AISI H13 steel. Int.
J. Adv. Manuf. Technol. (2005). doi:10.1007/s00170-003-1878-5
Hessainia, Z., Belbah, A., Yallese, M. A., Mabrouki, T. & Rigal, J. F. On the prediction of surface
roughness in the hard turning based on cutting parameters and tool vibrations. Meas. J. Int. Meas.
Confed. (2013). doi:10.1016/j.measurement.2012.12.016
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.