Determination of Demand Forecasting Variables by Exponential Smoothing Method


Abstract views: 450 / PDF downloads: 360

Authors

DOI:

https://doi.org/10.5281/zenodo.6948405

Keywords:

Demand forecasting, ETS, mean absolute percent error

Abstract

Today, as in many sectors, many methods are used in demand forecasting, which is important in determining the most accurate strategies for production planning in the commercial refrigerator sector. The first of these methods is time series approaches. In particular, future demand trends of customers can be affected by many factors, such as market conditions and seasonality. It is important that the enterprises are planning the cost and product related to production, and that the resources are organized and structured in accordance with these goals. The purpose of these goals is to carry businesses to a solid place in the market financially and commercially by making accurate and reliable forecasts. In this study, the future estimations of dollar, TUFE, UFE and consumer confidence index variables, which will be used in the estimation of refrigerator sales in the production sector in Manisa between 2003 and 2022, were made using exponential correction (ETS) methods.

For the estimation of the other variables in the model to be established in the demand variable, the exponential correction method (ETS) was used and three different elements such as error, trend and seasonality were taken into account and estimation was made. The mean absolute percent error (MAPE) value was used to achieve the best performance among the ETS models. ETS models established with the available data are ETS (A, N, N) for TGE and ETS (M ,Ad, N) for TUFE, UFE and dollar. There is no seasonality in all these variables. In addition, while there is no trend in TGE, the effect of the trend decreases over time in other variables. However, with the flowing data, the data pool expands and the another ETS model can be found by using ETS methods. One of the biggest advantages of this method is that it allows new models by taking into account the flowing data easily.

References

Arslankaya, S. (2019). Bir Lojistik Firmasında Zaman Serileri Analizi ve Yapay Sinir Ağları İle Talep Tahminin Karşılaştırılması. 4th International Symposium on Innovative Approaches in Engineering and Natural Sciences, ISAS WINTER-2019, Samsun, Turkey, Conference Proceedings, 4(6): 239-245.

Asilkan, Ö., Irmak, S. (2009). İkinci El Otomobillerin Gelecekteki Fiyatlarının Yapay Sinir Ağları ile Tahmin Edilmesi. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(2): 375-391.

Bağcı, B. (2020). Hareketli Ortalamalar ve Üssel Düzeltme Yöntemlerinin Tahmin Gücünün Artırılması: Türkiye’de Döviz Kuru Tahmini. Turkuaz Uluslararası Sosyo-Ekonomik Stratejik Araştırmalar Dergisi, 2(2):1-12.

Gardner, E.S. (1985). Exponential Smoothing: The State of the Art. Journal of Forecasting. 4: 1–28. https://doi.org/10.1002/for.3980040103

Gardner, E.S., McKenzie, E. (1989). Seasonal Exponential Smoothing with Damped Trends. Management Science. 35: 372–376. https://doi.org/10.1287/mnsc.35.3.372

Gardner, E.S. (2006). Exponential Smoothing: The State of the Art-Part II. International Journal of Forecasting. 22: 637–666. https://doi.org/10.1016/j.ijforecast.2006.03.005

Holt, C.C., 2004. Forecasting Seasonals and Trends by Exponentially Weighted Moving Averages. International Journal of Forecasting, 20:5-10. https://doi.org/10.1016/j.ijforecast.2003.09.015

Hyndman, R.J., Koehler, A.B., Snyder, R.D. & Grose, S. (2002). A State Space Framework for Automatic Forecasting Using Exponential Smoothing Methods. International Journal of Forecasting. 18(3): 439–454. https://doi.org/10.1016/S0169-2070(01)00110-8

Hyndman, R. J., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008). Forecasting with Exponential Smoothing: The State Space Approach. Berlin: Springer-Verlag.

Karaatlı, M, Helvacıoğlu, Ö. C. Ömürbek, N. & Tokgöz, G. (2012). Yapay Sinir Ağları Yöntemi ile Otomobil Satış Tahmini. Uluslararası Yönetim İktisat ve İşletme Dergisi, 8(17): 87-100.

Karahan, M. (2011). İstatistiksel Tahmin Yöntemleri: Yapay Sinir Ağları Metodu ile Ürün Talep Tahmin Uygulaması. TC Selçuk Ünv. Sosyal Bilimler Enstitüsü İşletme ABD Yayınlanmamış Doktora Tezi, Konya, Türkiye.

McKenzie, E., Gardner, E.S. (2010). The Damped Trend: A Modeling Viewpoint. International Journal of Forecasting.

Pegels, C.C. (1969). Exponential Forecasting: Some New Variations. Management Science. 15(5): 311–315. https://www.jstor.org/stable/2628137.

Sabır, C., Batuk, E. (2013). Demand Forecasting with of Using Time Series Models in Textile Dyeing-Finishing Mills. Tekstil ve Konfeksiyon, 23(2):143-151.

Svetunkov, I. (2022). Forecasting and Analytics with ADAM. https://openforecast.org/adam/Svetunkov%20(2022)%20-%20ADAM.pdf

Svetunkov, I. (2022) Statistics for Business Analytics. https://openforecast.org/sba/

Taylor, J.W. (2003). Exponential Smoothing with a Damped Multiplicative Trend. International Journal of Forecasting. 19: 715–725. https://doi.org/10.1016/S0169-2070(03)00003-7

TC Merkez Bankası. (2022). https://www.tcmb.gov.tr

Uğurlu, E. & Saraçoğlu, B. (2010). Türkiye’de Enflasyon Hedeflemesi ve Enflasyonun Öngörüsü. Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 25(2): 57-72.

Wikipedia, Üretici fiyat endeksi, Wikipedia, (version: 2021-12-07). URL https://tr.wikipedia.org/wiki/%C3%9Cretici_fiyat_endeksi

Wikipedia, Tüketici fiyat endeksi, Wikipedia, (version: 2021-07-01). URL https://tr.wikipedia.org/wiki/T%C3%BCketici_fiyat_endeksi

Wikipedia, Tüketici Güven Endeksi, Wikipedia, (version: 2022-04-29). URL https://tr.wikipedia.org/wiki/T%C3%BCketici_G%C3%BCven_Endeksi

Published

2022-08-01

How to Cite

Yılmaz, M. B., & Çilengiroğlu, Özgül V. (2022). Determination of Demand Forecasting Variables by Exponential Smoothing Method. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 9(22), 92–103. https://doi.org/10.5281/zenodo.6948405

Issue

Section

Articles