Köpeklerde Beyin Yaşlanması


Özet Görüntüleme: 87 / PDF İndirme: 37

Yazarlar

DOI:

https://doi.org/10.5281/zenodo.15055278

Anahtar Kelimeler:

Yaşlanma, Beyin, Köpek, Nöron, Nörogenez

Özet

Yaşlanan köpekler ve insanlar beyin değişiklikleri açısından birçok benzerlik gösterirken, bazı önemli farklılıklar da göstermektedir. Çeşitli araştırma grupları, çeşitli yaşlanma teorilerini test etmek ve faydalı olacak tedavi yöntemleri geliştirmek için yaşlanan köpeklerle çalışmaktadır. Yaşlı köpekler doğal olarak bilişsel gerilemeyle bağlantılı olabilecek çeşitli nöropatoloji türlerini biriktirir. Manyetik rezonans görüntüleme çalışmalarına göre ventriküler hacimdeki artışla birlikte yaşla birlikte önemli kortikal atrofi meydana gelir. Yaşlı köpeklerin hipokampüsünde nöron kaybı ve nörogenezin azalması, öğrenme ve hafıza için kritik bir alandır. Köpeklerde yaşla birlikte proteinlerde, DNA/RNA'da ve lipitlerde oksidatif hasar meydana gelmektedir. Yaşlı köpek beyninde daha az araştırılmış olmasına rağmen, yaşla birlikte gözlenen nöron kaybı ve serebrovasküler patoloji, insan beyninin yaşlanmasına benzerdir ve bilişsel gerilemeyle de bağlantılı olabilir.

Referanslar

Attems, J., Jellinger, K. A., Lintner, F., 2005. Alzheimer’s disease pathology influences severity and topographical distribution of cerebral amyloid angiopathy. Acta neuropathologica, 110: 222-231.

Bartzokis, G., 2004. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiology of aging, 25(1): 5-18.

Bobinski, M., Wegiel, J., Tarnawski, M., Bobinski, M., Reisberg, B., De Leon, M. J., Miller, D.C., Wisniewski, H. M., 1997. Relationships between regional neuronal loss and neurofibrillary changes in the hippocampal formation and duration and severity of Alzheimer disease. Journal of Neuropathology & Experimental Neurology, 56(4), 414-420.

Bosch, M., Pugliese, M., Gimeno-Bayon, J., Jose Rodriguez, M., Mahy, N., 2012. Dogs with cognitive dysfunction syndrome: a natural model of Alzheimer’s disease. Current Alzheimer Research, 9(3): 298-314.

Chambers, J. K., Mutsuga, M., Uchida, K., Nakayama, H., 2011. Characterization of AβpN3 deposition in the brains of dogs of various ages and other animal species. Amyloid, 18(2): 63-71.

Chambers, J. K., Uchida, K., Nakayama, H., 2012. White matter myelin loss in the brains of aged dogs. Experimental Gerontology, 47(3): 263-269.

Colle, M. A., Hauw, J. J., Crespeau, F., Uchihara, T., Akiyama, H., Checler, F., Pageat, P., Duykaerts, C., 2000. Vascular and parenchymal Aβ deposition in the aging dog: correlation with behavior. Neurobiology of aging, 21(5): 695-704.

Cotman, C. W., Head, E., Muggenburg, B. A., Zicker, S., Milgram, N. W., 2002. Brain aging in the canine: a diet enriched in antioxidants reduces cognitive dysfunction. Neurobiology of aging, 23(5): 809-818.

Cummings, B. J., Head, E., Afagh, A. J., Milgram, N. W., Cotman, C. W., 1996. β-amyloid accumulation correlates with cognitive dysfunction in the aged canine. Neurobiology of learning and memory, 66(1): 11-23.

Deane, R., Zlokovic, B. V., 2007. Role of the blood-brain barrier in the pathogenesis of Alzheimer's disease. Current Alzheimer Research, 4(2): 191-197.

Dowling, A. L., Head, E., 2012. Antioxidants in the canine model of human aging. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1822(5): 685-689.

Du, A. T., Schuff, N., Chao, L. L., Kornak, J., Jagust, W. J., Kramer, J. H., Reed, B.R., Miller, B.L., Norman, D., Chui, H.C., Weiner, M. W., 2006. Age effects on atrophy rates of entorhinal cortex and hippocampus. Neurobiology of aging, 27(5): 733-740.

Ezekiel, F., Chao, L., Kornak, J., Du, A. T., Cardenas, V., Truran, D., Jagust, W., Chui, H., Miller, B., Yaffe, K., Schuff, N., Weiner, M., 2004. Comparisons between global and focal brain atrophy rates in normal aging and Alzheimer disease: boundary shift integral versus tracing of the entorhinal cortex and hippocampus. Alzheimer Disease & Associated Disorders, 18(4): 196-201.

Gold, B. T., Johnson, N. F., Powell, D. K., Smith, C. D., 2012. White matter integrity and vulnerability to Alzheimer's disease: preliminary findings and future directions. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1822(3): 416-422.

González-Soriano, J., García, P. M., Contreras-Rodriguez, J., Martínez-Sainz, P., Rodríguez-Veiga, E., 2001. Age-related changes in the ventricular system of the dog brain. Annals of Anatomy-Anatomischer Anzeiger, 183(3): 283-291.

Haass, C., Selkoe, D. J., 2007. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nature reviews Molecular cell biology, 8(2): 101-112.

Head, E, 2013. A canine model of human aging and Alzheimer's disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1832(9): 1384-1389.

Head, E., 2011. Neurobiology of the aging dog. Age, 33(3): 485-496.

Head, E., Callahan, H., Muggenburg, B. A., Cotman, C. W., Milgram, N. W., 1998. Visual-discrimination learning ability and β-amyloid accumulation in the dog. Neurobiology of aging, 19(5): 415-425.

Head, E., McCleary, R., Hahn, F. F., Milgram, N. W., Cotman, C. W., 2000. Region-specific age at onset of β-amyloid in dogs. Neurobiology of aging, 21(1): 89-96.

Head, E., Nukala, V. N., Fenoglio, K. A., Muggenburg, B. A., Cotman, C. W., Sullivan, P. G.,2009. Effects of age, dietary, and behavioral enrichment on brain mitochondria in a canine model of human aging. Experimental neurology, 220(1): 171-176.

Head, E., Pop, V., Sarsoza, F., Kayed, R., Beckett, T. L., Studzinski, C. M., Tomic, J.L., Glabe, C.G., Murphy, M. P., 2010. Amyloid-β peptide and oligomers in the brain and cerebrospinal fluid of aged canines. Journal of Alzheimer’s Disease, 20(2): 637-646.

Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F., Feinstein, D. L., Jacobs, A.H., Wyss-Coray, T., Vitorica, J., Ransohoff, R.M., Herrup, K., Frautschy, S.A., Finsen, B., Brown, G.C., Verkratsky, A., Yamanaka, K., Koistinaho, J., Latz, E., Halle, A., Petzold, G.C., Town, T., Morgan, D., Shinohara, M.L., Perry, V.H., Holmes, C, Bazan, N.G., Brooks, D.J., Hunot, S., Joseph, B., Deigendesch, N., Garaschuk, O., Boddeke, E., Dinarello, C.A., Breitner, J.C., Cole, G.M., Golenbock, D.T., Kummer, M. P., 2015. Neuroinflammation in Alzheimer's disease. The Lancet Neurology, 14(4): 388-405.

Herzig, M. C., Van Nostrand, W. E., Jucker, M., 2006. Mechanism of cerebral β‐amyloid angiopathy: murine and cellular models. Brain pathology, 16(1): 40-54.

Hwang, I. K., Yoon, Y. S., Yoo, K. Y., Li, H., Choi, J. H., Kim, D. W., Yi, S.S., Seong, J.K., Lee, I.S., Won, M. H., 2008. Differences in lipid peroxidation and Cu, Zn-superoxide dismutase in the hippocampal CA1 region between adult and aged dogs. Journal of Veterinary Medical Science, 70(3): 273-277.

Kimotsuki, T., Nagaoka, T., Yasuda, M., Tamahara, S., Matsuki, N., Ono, K., 2005. Changes of magnetic resonance imaging on the brain in beagle dogs with aging. Journal of veterinary medical science, 67(10): 961-967.

Nichol, J., Head, E., 2017. Brain Aging in the Dog. In: G. Landsberg, A. Mad’ari, N. Zilka (Eds), Canine and Feline Dementia Molecular Basis, Diagnostics and Therapy, Springer International Publishing, Switzerland, pp. 93-102.

Opii, W. O., Joshi, G., Head, E., Milgram, N. W., Muggenburg, B. A., Klein, J. B., Pierce, W.M., Cotman, C.W., Butterfield, D. A., 2008. Proteomic identification of brain proteins in the canine model of human aging following a long-term treatment with antioxidants and a program of behavioral enrichment: relevance to Alzheimer's disease. Neurobiology of aging, 29(1): 51-70.

Ozawa, M., Chambers, J. K., Uchida, K., Nakayama, H., 2016. The relation between canine cognitive dysfunction and age-related brain lesions. Journal of Veterinary Medical Science, 78(6): 997-1006.

Prior, R., D'Urso, D., Frank, R., Prikulis, I., Pavlakovic, G., 1996. Loss of vessel wall viability in cerebral amyloid angiopathy. Neuroreport, 7(2): 562-564.

Pugliese, M., Geloso, M. C., Carrasco, J. L., Mascort, J., Michetti, F., Mahy, N., 2006. Canine cognitive deficit correlates with diffuse plaque maturation and S100β (−) astrocytosis but not with insulin cerebrospinal fluid level. Acta neuropathologica, 111: 519-528.

Rofina, J. E., Van Ederen, A. M., Toussaint, M. J. M., Secreve, M., Van Der Spek, A., Van Der Meer, I., van Eerdenburg, F.J.C.M., Gruys, E., 2006. Cognitive disturbances in old dogs suffering from the canine counterpart of Alzheimer's disease. Brain research, 1069(1): 216-226.

Sarasa, L., Allué, J. A., Pesini, P., González-Martínez, Á., Sarasa, M., 2013. Identification of β-amyloid species in canine cerebrospinal fluid by mass spectrometry. Neurobiology of aging, 34(9): 2125-2132.

Schütt, T., Helboe, L., Pedersen, L. Ø., Waldemar, G., Berendt, M., Pedersen, J. T., 2016. Dogs with cognitive dysfunction as a spontaneous model for early Alzheimer’s disease: a translational study of neuropathological and inflammatory markers. Journal of Alzheimer's Disease, 52(2): 433-449.

Selkoe, D. J., 1994. Normal and abnormal biology of the! b-amyloid precursor protein. Annual review of neuroscience, 17(1): 489-517.

Selkoe, D. J., 2008. Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behavioural brain research, 192(1): 106-113.

Šimić, G., Kostović, I., Winblad, B., Bogdanović, N., 1997. Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer's disease. Journal of Comparative Neurology, 379(4): 482-494.

Siwak-Tapp, C. T., Head, E., Muggenburg, B. A., Milgram, N. W., Cotman, C. W., 2008. Region specific neuron loss in the aged canine hippocampus is reduced by enrichment. Neurobiology of aging, 29(1): 39-50.

Siwak-Tapp, C. T., Head, E., Muggenburg, B. A., Milgram, N. W., Cotman, C. W., 2007. Neurogenesis decreases with age in the canine hippocampus and correlates with cognitive function. Neurobiology of learning and memory, 88(2): 249-259.

Skoumalova, A., Rofina, J., Schwippelova, Z., Gruys, E., Wilhelm, J.,2003. The role of free radicals in canine counterpart of senile dementia of the Alzheimer type. Experimental gerontology, 38(6): 711-719.

Su, M. Y., Head, E., Brooks, W. M., Wang, Z., Muggenburg, B. A., Adam, G. E., Sutherland, R., Cotman, C.W., Nalcioglu, O., 1998. Magnetic resonance imaging of anatomic and vascular characteristics in a canine model of human aging. Neurobiology of aging, 19(5): 479-485.

Swanson, K. S., Vester, B. M., Apanavicius, C. J., Kirby, N. A., Schook, L. B., 2009. Implications of age and diet on canine cerebral cortex transcription. Neurobiology of aging, 30(8): 1314-1326.

Walsh, D. M., Klyubin, I., Fadeeva, J. V., Rowan, M. J., Selkoe, D. J., 2002. Amyloid-β oligomers: their production, toxicity and therapeutic inhibition. Biochemical Society Transactions, 30(4): 552-557.

West, M. J., Kawas, C. H., Martin, L. J., Troncoso, J. C., 2000. The CA1 region of the human hippocampus is a hot spot in Alzheimer's disease. Annals of the New York Academy of Sciences, 908(1): 255-259.

Wilcock, D. M., 2014. Neuroinflammatory phenotypes and their roles in Alzheimer's disease. Neurodegenerative diseases, 13(2-3): 183-185.

İndir

Yayınlanmış

20.03.2025

Nasıl Atıf Yapılır

ELİBOL, B., AYDEMİR, F. K., & ACAR, A. (2025). Köpeklerde Beyin Yaşlanması . Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 12(1), 1–8. https://doi.org/10.5281/zenodo.15055278

Sayı

Bölüm

Makaleler