Doku Benzeri Fantomlar Üzerinde Gerçekleştirilen Fotoakustik Etki Çalışmaları


Özet Görüntüleme: 122 / PDF İndirme: 60

Yazarlar

DOI:

https://doi.org/10.5281/zenodo.6948354

Anahtar Kelimeler:

Fotoakustik etki, doku benzeri fantomlar, agar, zerdine, kas fantomu, elektriksel sinyaller, fotoakustik spektroskopi, fotoakustik görüntüleme

Özet

Hem fotoakustik spektroskopi hem de fotoakustik görüntüleme çalışmaları fotoakustik etki ilkesine dayanmaktadır. Farklı yapılara sahip doku benzeri malzemelerin fotoakustik etkilerinin araştırılması bilim camiasına değerli bilgiler sağlayabilir. Bu çalışmada, içi hava ile dolu hücre tipi bir fotoakustik ölçüm sistemi geliştirilmiştir. Fotoakustik ölçüm sistemi, sürekli dalga lazer sistemi, kıyıcı/chopper, kilitli amplifikatör ve içinde hassas bir mikrofonun yer aldığı deneysel bir hücreden oluşturulmuştur. Bir kıyıcı ile birlikte çalışan sürekli dalga lazer ışığı, hücre içine yerleştirilen farklı doku benzeri malzemelere yansıtılmış ve bu şekilde farklı doku benzeri malzemelerin fotoakustik etkilerinin elektrik sinyalleri elde edilmiştir. Elektrik sinyallerinden elde edilen spektrumlar, çeşitli kıyıcı frekanslarında çıkarılmıştır. Ayrıca, bu çalışmada fantomların makroskopik ve mikroskobik optik parametrelerinin de fotoakustik ölçümlerden belirlenebileceği yenilikçi bir şekilde gösterilmiştir.

Referanslar

Ashton, H. S., MacKenzie, H. A., Rae, P., Shen, Y. C., Spiers, S., & Lindberg, J. (1999). Blood glucose measurements by photoacoustics. 463(1), s. 570-572.

Baddour, N., & Mandelis, A. (2015). The Effect of Acoustic Impedance on Subsurface Absorber Geometry Reconstruction using 1D Frequency-Domain Photoacoustics. Photoacoustics, 3(4), s. 132-142.

Bayer, C. L., Luke, G. P., & Emelianov, S. Y. (2012). Photoacoustic imaging for medical diagnostics. Acoustics today, 8(4), 15.

Beard, P. (2011). Biomedical photoacoustic imaging. Interface focus, 1(4), 602-631.

Chang, S., & Bowden, A. K. (2019). Review of methods and applications of attenuation coefficient measurements with optical coherence tomography. Journal of biomedical optics, 24(9), 090901.

Chen, Q., Qin, W., Qi, W., & Xi, L. (2021). Progress of clinical translation of handheld and semi-handheld photoacoustic imaging. Photoacoustics, 22(100264).

Cook, J. R., Bouchard, R. R., & Emelianov, S. Y. (2011). Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging. Biomedical optics express, 2(11), s. 3193–3206. doi:10.1364/BOE.2.003193

Culjat, M. O., Goldenberg, D., Tewari, P., & Singh, R. S. (2010). A review of tissue substitutes for ultrasound imaging. Ultrasound in medicine & biology, 36(6), s. 861-873.

Gutierrez, M. I., Lopez-Haro, S. A., Vera, A., & Leija, L. (2016). Experimental verification of modeled thermal distribution produced by a piston source in physiotherapy ultrasound. BioMed research international.

Haisch, C. (2011). Photoacoustic spectroscopy for analytical measurements. Meas. Sci. Technol., 23(012001).

Hariri, A., Lemaster, J., Wang, J., Jeevarathinam, A. S., Chao, D. L., & Jokerst, J. V. (2018). The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging. Photoacoustics, 9, 10-20.

Harvey, D. T. (2003). Analytical Chemistry for Technicians (3rd Edittion b.). John Kenkel.

Herrmann, K., Pech-May, N., & Retsch, M. (2021). Photoacoustic thermal characterization of low thermal diffusivity thin films. Photoacoustics, 22(100246).

Hosseinaee, Z., Le, M., Bell, K., & Reza, P. H. (2020). Towards non-contact photoacoustic imaging [review]. Photoacoustics, 20(100207).

Jeong, E. J., Song, H. W., Lee, Y. J., Park, S. J., Yim, M. J., Lee, S. S., & Kim, B. K. (2017). Fabrication and characterization of PVCP human breast tissue-mimicking phantom for photoacoustic imaging. BioChip Journal, 11(1), s. 67-75.

Karaböce, B., Çetin, E., Durmuş, H. O., & Özdingiş, M. (2016). Investigation of the temperature effect of ultrasound used in cancer therapy. In 2016 Medical Technologies National Congress (TIPTEKNO) (s. 1-4). IEEE.

Keeratirawee, K., & Hauser, P. C. (2021). Photoacoustic detection of ozone with a red laser diode. Talanta, 223, Part 2(121890).

Krishnaswamy, S. (2008). Photoacoustic Characterization of Materials. In Springer Handbook of Experimental Solid Mechanics. Boston, MA, USA: Springer.

Liu, L., Huan, H., Zhang, X., Zhang, L., Shao, X., & Mandelis, A. (2021). Laser Induced Thermoelastic Contributions from Windows to Signal Background in a Photoacoustic Cell. Photoacoustics(100257).

Liu, L., Huan, H., Zhang, X., Zhang, L., Shao, X., Mandelis, A., & Dong, L. (2021). Laser induced thermoelastic contributions from windows to signal background in a photoacoustic cell. Photoacoustics, 22(100257).

Manohar, S., & Gambhir, S. (2020). Clinical photoacoustic imaging. Photoacoustics,, 19(100196).

McGarry, C. K., Grattan, L. J., Ivory, A. M., Leek, F., Liney, G. P., Liu, Y., & Clark, C. H. (2020). Tissue mimicking materials for imaging and therapy phantoms: a review. Physics in Medicine & Biology.

Mehra, N. K., Jain, K., & Jain, N. K. (2016). Multifunctional carbon nanotubes in cancer therapy and imaging. In Nanobiomaterials in Medical Imaging. William Andrew Publishing.

Musdal, B. D., & Kurt, M. (2021). Design of EM-artifact-free earphone based on the photoacoustic effect. Photoacoustics, 21(100214). doi:10.1016/j.pacs.2020.100214.

Nadeem, M. Y., & & Ahmed, W. (2000). Optical properties of ZnS thin films. Turkish Journal of Physics, 24(5), 651-659.

Oraevsky, A., Clingman, B., Zalev, J., Stavros, A., Yang, W., & Parikh, J. (2018). Clinical optoacoustic imaging combined with ultrasound for coregistered functional and anatomical mapping of breast tumors. Photoacoustics, 12, 30-45.

Park, S. M., Kim, D. Y., Cho, S.-W., Kim, B.-M., Lee, T. G., Kim, C.-S., & Lee, S.-W. (2020). Quickly Alternating Green and Red Laser Source for Real-time Multispectral Photoacoustic Microscopy. Photoacoustics, 20(100204).

PhotoAcoustic Imaging (PAI). (2022). https://www.eurobioimaging.eu/service/photoacoustic-imaging-pai-

Photoacoustic spectroscopy for gas sensing: from theoretical modeling to applications. (2022). https://www.sciencedirect.com/journal/photoacoustics/special-issue/107XM34RKBJ

Pinto, D., Moser, H., Waclawek, J. P., Russo, S. D., Patimisco, P., Spagnolo, V., & Lendl, B. (2021). Parts-per-billion detection of carbon monoxide: A comparison between quartz-enhanced photoacoustic and photothermal spectroscopy. Photoacoustics, 22(100244).

Rajeshkumar, G., Vishnupriyan, R., & Selvadeepak, S. (2020). Tissue Mimicking Material an Idealized Tissue Model for Clinical Applications: A Review. Materials Today: Proceedings, (s. 2696-2703).

Sawada, T. (1982). Hikari Onkyou Bunkouhou to Sono Ouyou - PAS [Applications of Photoacoustic Spectroscopy - PAS]. Japan Scientific Societies Press.

Steinberg, I., Huland, D. M., Vermesh, O., Frostig, H. E., Tummers, W. S., & Gambhir, S. S. (2019). Photoacoustic clinical imaging. Photoacoustics, 14, 77-98.

Su, J. L., Wang, B., Wilson, K. E., Bayer, C. L., Chen, Y. S., Kim, S., & Emelianov, S. Y. (2010). Advances in clinical and biomedical applications of photoacoustic imaging. Expert opinion on medical diagnostics, 4(6), 497-510.

Subramanian, A. S. (2009). Monitoring flavor quality, composition and ripening changes of Cheddar cheese using Fourier-transform infrared spectroscopy [Doctoral dissertation, The Ohio State University].

Tabaru, T. E., & Saraçoğlu, Ö. G. (2014). Darbeli Lazer Diyot Uyartımlı Fotoakustik Yöntemle Glikoz Algılanması. Eleco 2014 Elektrik – Elektronik – Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu. Bursa.

Tan, G. (2018). Photoacoustic analysis and imaging techniques: Sound of light. Particulate Science and Technology, 36(1), 29-37. doi:10.1080/02726351.2016.1205689

Thakur, S. N. (2018). Chapter 13 - Photoacoustic Spectroscopy: Applications in Security and Biology. V. Gupta içinde, Molecular and Laser Spectroscopy (s. 283-316). Elsevier.

Thouvenot, A., Poepping, T., Peters, T. M., & Chen, E. C. (2016). Characterization of various tissue mimicking materials for medical ultrasound imaging. In Medical Imaging 2016: Physics of Medical Imaging. International Society for Optics and Photonics, 9783(97835E).

Torrent, J., & Barrón, V. (2008). Methods of Soil Analysis Part 5—Mineralogical Methods. Diffuse reflectance spectroscopy. (s. 367-385).

Volkov, D. S., Rogova, O. B., & Proskurnin, M. A. (2020). Photoacoustic and photothermal methods in spectroscopy and characterization of soils and soil organic matter. Photoacoustics, 17(100151).

Wilson, B. C. (1995). In Optical-thermal response of laser-irradiated tissue. Measurement of tissue optical properties: methods and theories. (s. 233-303). içinde Boston, MA: Springer.

Zerhouni, M. B., & Rachedine, M. "Ultrasonic calibration material and method," ed: Google Patents. (1993).

Zhang, Y., Hong, H., & Cai, W. (2011). Photoacoustic imaging. Cold Spring Harbor Protocols, 9.

Zhou, J., & Jokerst, J. V. (2020). Photoacoustic imaging with fiber optic technology: A review. Photoacoustics, 20(100211).

Yayınlanmış

01.08.2022

Nasıl Atıf Yapılır

Durmuş, H. O., & Seyidov, M. Y. (2022). Doku Benzeri Fantomlar Üzerinde Gerçekleştirilen Fotoakustik Etki Çalışmaları. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 9(22), 62–82. https://doi.org/10.5281/zenodo.6948354

Sayı

Bölüm

Makaleler