A Polyphenolic Approach to Cancer Treatment: A Review on Curcumin, Quercetin, and Gallic Acid
DOI:
https://doi.org/10.5281/zenodo.16599455Anahtar Kelimeler:
Cancer, Polyphenols, Curcumin, Quercetin, Gallic acid, Signaling pathwaysÖzet
Cancer remains the second leading cause of death worldwide after cardiovascular diseases and continues to pose a major global health challenge due to its multifactorial etiology. In recent years, increasing attention has been given to the potential role of dietary natural compounds in the prevention and treatment of cancer. Polyphenols, which are abundant in plant-based foods such as fruits, vegetables, tea, and spices, have emerged as promising secondary metabolites with anticancer potential. These compounds exert antioxidant, anti-inflammatory, anti-proliferative, and anti-metastatic effects, and can also modulate tumor development through epigenetic mechanisms. Polyphenols induce programmed cell death (apoptosis) in cancer cells, inhibit tumor angiogenesis, and target key signaling pathways such as MAPK, PI3K/Akt, and NF-κB to limit cell proliferation. This review focuses on the cytotoxic, anti-proliferative, and anti-metastatic effects of selected polyphenols—curcumin, quercetin, and gallic acid—on cancer cells, as well as the underlying molecular pathways responsible for these effects. These natural compounds hold promise as less toxic agents that can complement or serve as alternatives to conventional cancer therapies.
Referanslar
Abdel-Diam, M. M., Samak, D. H., El-Sayed, Y. S., Aleya, L., Alarifi, S., & Alkahtani, S. (2019). Curcumin and quercetin synergistically attenuate subacute diazinon-induced inflammation and oxidative neurohepatic damage, and acetylcholinesterase inhibition in albino rats. Environmental Science and Pollution Research, 26(4), 3659-3665.
Al Humayed, S., Al-Ani, B., El Karib, A. O., Shatoor, A. S., Eid, R. A., Aziz, S., ... & Haidara, M. A. (2019). Suppression of acetaminophen-induced hepatocyte ultrastructural alterations in rats using a combination of resveratrol and quercetin. Ultrastructural Pathology, 43(4-5), 162-169.
Almohammad Aljabr, B., Zihlif, M., Abu-Dahab, R., & Zalloum, H. (2024). Effect of quercetin on doxorubicin cytotoxicity in sensitive and resistant human MCF7 breast cancer cell lines. Biomedical Reports, 20(4), 58.
Appari, M., Babu, K. R., Kaczorowski, A., Gross, W., & Herr, I. (2014). Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition. International journal of oncology, 45(4), 1391-1400.
Argirova, M., Guncheva, M., Momekov, G., Cherneva, E., Mihaylova, R., Rangelov, M., ... & Yancheva, D. (2022). Modulation effect on tubulin polymerization, cytotoxicity and antioxidant activity of 1H-Benzimidazole-2-Yl hydrazones. Molecules, 28(1), 291.
Arzuman, A. A., Striese, A., & Gibson, D. (2014). Sequenced combinations of a monofunctional platinum-based agent with phytochemials/cisplatin in human ovarian cancer cell lines. Journal of Medicinal Chemistry, 57(4), 1478–1490.
Attia, Y. M., El-Kersh, D. M., Ammar, R. A., Adel, A., Khalil, A., Walid, H., ... & Mohsen, N. E. (2020). Inhibition of aldehyde dehydrogenase-1 and p-glycoprotein-mediated multidrug resistance by curcumin and vitamin D3 increases sensitivity to paclitaxel in breast cancer. Chemico-Biological Interactions, 315, 108865.
Banerjee, S., Singh, S. K., Chowdhury, I., Lillard, J. W., Jr, & Singh, R. (2017). Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancer. Frontiers in Bioscience (Elite Edition), 9(2), 235–245.
Berrak, O., Akkoc, Y., Arisan, E. D., Coker-Gurkan, A., Obakan-Yerlikaya, P., & Palavan-Unsal, N. (2016). The inhibition of PI3K and NF-κB promoted curcumin-induced cell cycle arrest at G2/M via altering polyamine metabolism in Bcl-2 overexpressing MCF-7 breast cancer cells. Biomedicine & Pharmacotherapy, 77, 150-160.
Beyer, K., Nikfarjam, F., Butting, M., Meissner, M., König, A., Bosca, A. R., ... & Zöller, N. (2017). Photodynamic treatment of oral squamous cell carcinoma cells with low curcumin concentrations. Journal of Cancer, 8(7), 1271.
Bilici, E., & Akkoc, S. (2025). In vitro cytotoxicity in A549, Hepg2, MCF-7, and DLD-1 cancer cell lines and ADME/toxin analysis of a benzimidazole derivative. Journal Of Kıng Saud Unıversıty-Scıence, 2.
Bilici, E., & Akkoc, S. (2025). Impact of a benzimidazole salt on gene expression, cytotoxicity, and apoptotic processes in HepG2 cell line. Journal of King Saud University–Science, 37.
Bilici, E., & Akkoc, S. (2025). Investigation of the Cytotoxic Effect of A New N-Phenyl Benzimidazole Derivative on Cell Viability in A549 and HepG2 Cell Lines. Van Tip Dergisi, 32(1).
Briguglio, G., Costa, C., Pollicino, M., Giambò, F., Catania, S., & Fenga, C. (2020). Polyphenols in cancer prevention: New insights. International Journal of Functional Nutrition, 1(2), 9.
Cháirez-Ramírez, M. H., de la Cruz-López, K. G., & García-Carrancá, A. (2021). Polyphenols as antitumor agents targeting key players in cancer-driving signaling pathways. Frontiers in pharmacology, 12, 710304.
Chen, S., Nimick, M., Cridge, A. G., Hawkins, B. C., & Rosengren, R. J. (2018). Anticancer potential of novel curcumin analogs towards castrate-resistant prostate cancer. International Journal of Oncology, 52(2), 579-588.
Coker-Gurkan, A., Bulut, D., Genc, R., Arisan, E. D., Obakan-Yerlikaya, P., & Palavan-Unsal, N. (2019). Curcumin prevented human autocrine growth hormone (GH) signaling mediated NF-κB activation and miR-183-96-182 cluster stimulated epithelial mesenchymal transition in T47D breast cancer cells. Molecular Biology Reports, 46, 355-369.
Coker-Gurkan, A., Celik, M., Ugur, M., Arisan, E. D., Obakan-Yerlikaya, P., Durdu, Z. B., & Palavan-Unsal, N. (2018). Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells. Amino Acids, 50, 1045-1069.
De Matos, R. P. A., Calmon, M. F., Amantino, C. F., Villa, L. L., Primo, F. L., Tedesco, A. C., & Rahal, P. (2018). Effect of curcumin‐nanoemulsion associated with photodynamic therapy in cervical carcinoma cell lines. BioMed research international, 2018(1), 4057959.
Del Follo-Martinez, A., Banerjee, N., Li, X., Safe, S., & Mertens-Talcott, S. (2013). Resveratrol and quercetin in combination have anticancer activity in colon cancer cells and repress oncogenic microRNA-27a. Nutrition and cancer, 65(3), 494-504.
Deng H, Wei F, Han W, Li Y, Xu X, Zhang L, Zhang Y. Synergistic chemotherapy and immunomodulatory effects of Quercetin in cancer: a review. Front Immunol. 2025 May 26;16:1547992. doi: 10.3389/fimmu.2025.1547992. PMID: 40491926; PMCID: PMC12146352.
Deng, G. F., Lin, X., Xu, X. R., Gao, L. L., Xie, J. F., & Li, H. B. (2013). Antioxidant capacities and total phenolic contents of 56 vegetables. Journal of functional foods, 5(1), 260-266.
Di Petrillo, A., Orrù, G., Fais, A., & Fantini, M. C. (2022). Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytotherapy Research, 36(1), 266-278.
Díaz-Osterman, C. J., Gonda, A., Stiff, T., Sigaran, U., Valenzuela, M. M. A., Bennit, H. R., ... & Wall, N. R. (2016). Curcumin induces pancreatic adenocarcinoma cell death via reduction of the inhibitors of apoptosis. Pancreas, 45(1), 101-109.
Dorai, T., Gehani, N., & Katz, A. (2000). Therapeutic potential of curcumin in human prostate cancer-I. curcumin induces apoptosis in both androgen-dependent and androgen-independent prostate cancer cells. Prostate Cancer and Prostatic Diseases, 3(2), 84-93.
Duse, L., Agel, M. R., Pinnapireddy, S. R., Schäfer, J., Selo, M. A., Ehrhardt, C., & Bakowsky, U. (2019). Photodynamic therapy of ovarian carcinoma cells with curcumin-loaded biodegradable polymeric nanoparticles. Pharmaceutics, 11(6), 282.
Fadel, M., Kassab, K., Abd El Fadeel, D. A., Nasr, M., & El Ghoubary, N. M. (2018). Comparative enhancement of curcumin cytotoxic photodynamic activity by nanoliposomes and gold nanoparticles with pharmacological appraisal in HepG2 cancer cells and Erlich solid tumor model. Drug development and industrial pharmacy, 44(11), 1809-1816.
Fu, H., Wang, C., Yang, D., Wei, Z., Xu, J., Hu, Z., ... & Cai, Q. (2017). Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling. Journal of Cellular Physiology, 233(6), 4634-4642.
Fu, L., Xu, B. T., Xu, X. R., Qin, X. S., Gan, R. Y., & Li, H. B. (2010). Antioxidant capacities and total phenolic contents of 56 wild fruits from South China. Molecules, 15(12), 8602-8617.
Gersey, C., Rodriguez, G. A., Barbarite, E., Sanchez, A., Walters, W. M., Ohaeto, K. C., ... & Graham, R. M. (2017). Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species. BMC Cancer, 17(1), 99.
Ghasemi, F., Shafiee, M., Banikazemi, Z., Pourhanifeh, M. H., Khanbabaei, H., Shamshirian, A., ... & Avan, A. (2019). Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathology-Research and Practice, 215(10), 152556.
Granato, M., Rizzello, C., Montani, M. S. G., Cuomo, L., Vitillo, M., Santarelli, R., ... & Cirone, M. (2017). Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. The Journal of nutritional biochemistry, 41, 124-136.
Gulati, N., Laudet, B., Zohrabian, V. M., Murali, R. A. J., & Jhanwar-Uniyal, M. E. E. N. A. (2006). The antiproliferative effect of Quercetin in cancer cells is mediated via inhibition of the PI3K-Akt/PKB pathway. Anticancer research, 26(2A), 1177-1181.
Guorgui, J., Wang, R., Mattheolabakis, G., & Mackenzie, G. G. (2018). Curcumin formulated in solid lipid nanoparticles has enhanced efficacy in Hodgkin's lymphoma in mice. Archives of biochemistry and biophysics, 648, 12-19.
Hu, S., Xu, Y., Meng, L., Huang, L. ve Sun, H. (2018). Kurkumin, meme kanseri hücrelerinin çoğalmasını engeller ve apoptozunu destekler. Deneysel ve terapötik tıp , 16 (2), 1266-1272.
Huang, W. Y., Cai, Y. Z., & Zhang, Y. (2009). Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutrition and cancer, 62(1), 1-20.
Ide, H., Lu, Y., Noguchi, T., Muto, S., Okada, H., Kawato, S., & Horie, S. (2018). Modulation of AKR1C2 by curcumin decreases testosterone production in prostate cancer. Cancer Science, 109(4), 1230-1238.
Iqbal, B., Ghildiyal, A., Singh, S., Siddiqui, S., Kumari, P., Arshad, M., & Mahdi, A. A. (2018). A combinatorial effect of curcumin and tumor necrosis factor-α-related apoptosis-inducing ligand (TRAIL) in induction of apoptosis via inhibition of nuclear factor kappa B activity and enhancement of caspase-3 activity in chronic myeloid cells: An in-vitro study. Journal of Cancer Research and Therapeutics, 14(6), 1193.
Jeong, J. H., An, J. Y., Kwon, Y. T., Rhee, J. G., & Lee, Y. J. (2009). Effects of low dose quercetin: Cancer cell‐specific inhibition of cell cycle progression. Journal of cellular biochemistry, 106(1), 73-82.
Jia, L., Huang, S., Yin, X., Zan, Y., Guo, Y., & Han, L. (2018). Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life sciences, 208, 123-130.
Khatoon, E., Banik, K., Harsha, C., Sailo, B. L., Thakur, K. K., Khwairakpam, A. D., ... & Kunnumakkara, A. B. (2022, May). Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. In Seminars in Cancer Biology (Vol. 80, pp. 306-339). Academic Press.
Kielbik, A., Wawryka, P., Przystupski, D., Rossowska, J., Szewczyk, A., Saczko, J., ... & Chwiłkowska, A. (2019). Effects of photosensitization of curcumin in human glioblastoma multiforme cells. in vivo, 33(6), 1857-1864.
Kim, H., Seo, E. M., Sharma, A. R., Ganbold, B., Park, J., Sharma, G., ... & Nam, J. S. (2013). Regulation of Wnt signaling activity for growth suppression induced by quercetin in 4T1 murine mammary cancer cells. International journal of oncology, 43(4), 1319-1325.
Klinger, N. V., & Mittal, S. (2016). Therapeutic potential of curcumin for the treatment of brain tumors. Oxidative Medicine and Cellular Longevity, 2016, 9324085.
Lev-Ari, S., Strier, L., Kazanov, D., Madar-Shapiro, L., Dvory-Sobol, H., Pinchuk, I., ... & Arber, N. (2005). Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells. Clinical Cancer Research, 11(18), 6738-6744.
Li, M., Fan, J., Hu, M., Xu, J., He, Z., & Zeng, J. (2024). Quercetin enhances 5-fluorouracil sensitivity by regulating the autophagic flux and inducing drp-1 mediated mitochondrial fragmentation in colorectal cancer cells. Current Molecular Pharmacology, 17(1), e18761429283717.
Li, W. E. I., Liu, M. I. N., Xu, Y. F., Feng, Y., Che, J. P., Wang, G. C., & Zheng, J. H. (2014). Combination of quercetin and hyperoside has anticancer effects on renal cancer cells through inhibition of oncogenic microRNA-27a. Oncology reports, 31(1), 117-124.
Li, X., Guo, S., Xiong, X. K., Peng, B. Y., Huang, J. M., Chen, M. F., ... & Wang, J. N. (2019). Combination of quercetin and cisplatin enhances apoptosis in OSCC cells by downregulating xIAP through the NF-κB pathway. Journal of cancer, 10(19), 4509.
Li, X., Ma, S., Yang, P., Sun, B., Zhang, Y., Sun, Y., ... & Jia, Y. (2018). Anticancer effects of curcumin on nude mice bearing lung cancer A549 cell subsets SP and NSP cells. Oncology Letters, 16(5), 6756-6762.
Liu, W. H., Yuan, J. B., Zhang, F., & Chang, J. X. (2019). [Curcumin inhibits proliferation, migration and invasion of gastric cancer cells via Wnt3a/β-catenin/EMT signaling pathway]. Zhongguo Zhong Yao Za Zhi, 44(15), 3107-3115.
Luo, C. L., Liu, Y. Q., Wang, P., Song, C. H., Wang, K. J., Dai, L. P., ... & Ye, H. (2016). The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression. Biomedicine & pharmacotherapy, 82, 595-605.
Machado, F. C., de Matos, R. P. A., Primo, F. L., Tedesco, A. C., Rahal, P., & Calmon, M. F. (2019). Effect of curcumin-nanoemulsion associated with photodynamic therapy in breast adenocarcinoma cell line. Bioorganic & Medicinal Chemistry, 27(9), 1882-1890.
Maleki Dana, P., Sadoughi, F., Asemi, Z., & Yousefi, B. (2022). The role of polyphenols in overcoming cancer drug resistance: A comprehensive review. Cellular & Molecular Biology Letters, 27(1), 1.
Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American journal of clinical nutrition, 79(5), 727-747.
Mansourizadeh, F., Alberti, D., Bitonto, V., Tripepi, M., Sepehri, H., Khoee, S., & Crich, S. G. (2020). Efficient synergistic combination effect of Quercetin with Curcumin on breast cancer cell apoptosis through their loading into Apo ferritin cavity. Colloids and Surfaces B: Biointerfaces, 191, 110982.
Miller, K. D., Fidler‐Benaoudia, M., Keegan, T. H., Hipp, H. S., Jemal, A., & Siegel, R. L. (2020). Cancer statistics for adolescents and young adults, 2020. CA: a cancer journal for clinicians, 70(6), 443-459.
Mojsin, M., Vicentic, J. M., Schwirtlich, M., Topalovic, V., & Stevanovic, M. (2014). Quercetin reduces pluripotency, migration and adhesion of human teratocarcinoma cell line NT2/D1 by inhibiting Wnt/β-catenin signaling. Food & function, 5(10), 2564-2573.
Mouria, M., Gukovskaya, A. S., Jung, Y., Buechler, P., Hines, O. J., Reber, H. A., & Pandol, S. J. (2002). Food‐derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. International Journal of Cancer, 98(5), 761-769.
Mu, C., Jia, P., Yan, Z., Liu, X., Li, X., & Liu, H. (2007). Quercetin induces cell cycle G1 arrest through elevating Cdk inhibitors p21 and p27 in human hepatoma cell line (HepG2). Methods and findings in experimental and clinical pharmacology, 29(3), 179-183.
Mukherjee, A., & Khuda-Bukhsh, A. R. (2015). Quercetin down-regulates IL-6/STAT-3 signals to induce mitochondrial-mediated apoptosis in a nonsmall-cell lung-cancer cell line, A549. Journal of pharmacopuncture, 18(1), 19.
Nakamae, I., Morimoto, T., Shima, H., Shionyu, M., Fujiki, H., Yoneda-Kato, N., ... & Shirai, T. (2019). Curcumin derivatives verify the essentiality of ROS upregulation in tumor suppression. Molecules, 24(22), 4067.
Nguyen, J., Nguyen, T. Q., Han, B. O., & Hoang, B. X. (2024). Oral Fenbendazole for Cancer Therapy in Humans and Animals. Anticancer Research, 44(9), 3725-3735.
Nurgali, K., Jagoe, R. T., & Abalo, R. (2018). Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae?. Frontiers in pharmacology, 9, 245.
Park, B. H., Lim, J. E., Jeon, H. G., Seo, S. I., Lee, H. M., Choi, H. Y., ... & Jeong, B. C. (2016). Curcumin potentiates antitumor activity of cisplatin in bladder cancer cell lines via ROS-mediated activation of ERK1/2. Oncotarget, 7(39), 63870.
Rafiq, S., Raza, M. H., Younas, M., Naeem, F., Adeeb, R., Iqbal, J., ... & Manzoor, H. M. (2018). Molecular targets of curcumin and future therapeutic role in leukemia. Journal of Biosciences and Medicines, 6(4), 33-50.
Rao, J., Xu, D. R., Zheng, F. M., Long, Z. J., Huang, S. S., Wu, X., ... & Liu, Q. (2011). Curcumin reduces expression of Bcl-2, leading to apoptosis in daunorubicin-insensitive CD34+ acute myeloid leukemia cell lines and primary sorted CD34+ acute myeloid leukemia cells. Journal of Translational Medicine, 9, 71.
Rauf, A., Imran, M., Khan, I. A., ur‐Rehman, M., Gilani, S. A., Mehmood, Z., & Mubarak, M. S. (2018). Anticancer potential of quercetin: A comprehensive review. Phytotherapy research, 32(11), 2109-2130.
Roos, F., Binder, K., Rutz, J., Maxeiner, S., Bernd, A., Kippenberger, S., ... & Blaheta, R. A. (2019). The antitumor effect of curcumin in urothelial cancer cells is enhanced by light exposure in vitro. Evidence‐Based Complementary and Alternative Medicine, 2019(1), 6374940.
Sahyon, H. A., Ramadan, E. N., & Mashaly, M. M. (2019). Synergistic effect of quercetin in combination with sulfamethoxazole as new antibacterial agent: In vitro and in vivo study. Pharmaceutical Chemistry Journal, 53(9), 803-813.
Schiller, J. T., & Lowy, D. R. (2020). An introduction to virus infections and human cancer. In Viruses and human cancer: from basic science to clinical prevention (pp. 1-11). Cham: Springer International Publishing.
Schwertheim, S., Wein, F., Lennartz, K., Worm, K., Schmid, K. W., & Sheu-Grabellus, S. Y. (2017). Curcumin induces G2/M arrest, apoptosis, NF-κB inhibition, and expression of differentiation genes in thyroid carcinoma cells. Journal of Cancer Research and Clinical Oncology, 143(7), 1143-1154.
Seo, H. S., Ku, J. M., Choi, H. S., Choi, Y. K., Woo, J. K., Kim, M., ... & Ko, S. G. (2016). Quercetin induces caspase-dependent extrinsic apoptosis through inhibition of signal transducer and activator of transcription 3 signaling in HER2-overexpressing BT-474 breast cancer cells. Oncology reports, 36(1), 31-42.
Serri, C., Quagliariello, V., Iaffaioli, R. V., Fusco, S., Botti, G., Mayol, L., & Biondi, M. (2019). Combination therapy for the treatment of pancreatic cancer through hyaluronic acid‐decorated nanoparticles loaded with quercetin and gemcitabine: A preliminary in vitro study. Journal of cellular physiology, 234(4), 4959-4969.
Shan, B. E., Wang, M. X., & Li, R. Q. (2009). Quercetin inhibit human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/β-catenin signaling pathway. Cancer investigation, 27(6), 604-612.
Shen, X., Si, Y., Wang, Z., Wang, J., Guo, Y., & Zhang, X. (2016). Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3K/Akt signaling. International journal of molecular medicine, 38(2), 619-626.
Singh, C. K., Chhabra, G., Ndiaye, M. A., Siddiqui, I. A., Panackal, J. E., Mintie, C. A., & Ahmad, N. (2020). Quercetin–resveratrol combination for prostate cancer management in TRAMP mice. Cancers, 12(8), 2141.
Soofiyani, S. R., Hosseini, K., Forouhandeh, H., Ghasemnejad, T., Tarhriz, V., Asgharian, P., ... & Cho, W. C. (2021). Quercetin as a novel therapeutic approach for lymphoma. Oxidative Medicine and Cellular Longevity, 2021(1), 3157867.
Srinivasan, A., Thangavel, C., Liu, Y., Shoyele, S., Den, R. B., Selvakumar, P., & Lakshmikuttyamma, A. (2016). Quercetin regulates β‐catenin signaling and reduces the migration of triple negative breast cancer. Molecular carcinogenesis, 55(5), 743-756.
Srivastava, N. S., & Srivastava, R. A. (2019). Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β-catenin signaling and apoptotic pathways in A375 cells. Phytomedicine, 52, 117-128.
Srivastava, N. S., & Srivastava, R. A. K. (2019). Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β-catenin signaling and apoptotic pathways in A375 cells. Phytomedicine, 52, 117-128.
Tomeh, M. A., Hadianamrei, R., & Zhao, X. (2019). A review of curcumin and its derivatives as anticancer agents. International Journal of Molecular Sciences, 20(5), 1033.
Vafadar A, Shabaninejad Z, Movahedpour A, Fallahi F, Taghavipour M, Ghasemi Y, Akbari M, Shafiee A, Hajighadimi S, Moradizarmehri S, Razi E, Savardashtaki A, Mirzaei H. Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells. Cell Biosci. 2020 Mar 10;10:32. doi: 10.1186/s13578-020-00397-0. PMID: 32175075; PMCID: PMC7063794.
Wang, C., Song, X., Shang, M., Zou, W., Zhang, M., Wei, H., & Shao, H. (2019). Curcumin exerts cytotoxicity dependent on reactive oxygen species accumulation in non-small-cell lung cancer cells. Future Oncology, 15(11), 1243-1253.
Wang, J. J., Lei, K. F., & Han, F. J. E. R. M. P. S. (2018). Tumor microenvironment: recent advances in various cancer treatments. European Review for Medical & Pharmacological Sciences, 22(12).
Wang, J. W., Wang, X., Wang, X. J., Zheng, B. Z., Wang, Y., & Liang, B. (2018). Curcumin inhibits the growth via Wnt/β-catenin pathway in non-small-cell lung cancer cells. European Review for Medical and Pharmacological Sciences, 22(21), 7492-7499.
Wang, P., Phan, T., Gordon, D., Chung, S., Henning, S. M., & Vadgama, J. V. (2015). Arctigenin in combination with quercetin synergistically enhances the antiproliferative effect in prostate cancer cells. Molecular nutrition & food research, 59(2), 250-261.
Wanli, Z., Xudong, Z., Guisong, Q., & Yuexian, G. (2018). Curcumin suppressed the prostate cancer by inhibiting JNK pathways via epigenetic regulation. Journal of Biochemical and Molecular Toxicology, 32(5), e22049.
Weathers, S. P., & Gilbert, M. R. (2014). Advances in treating glioblastoma. F1000Prime Reports, 6, 46.
Wu, G. Q., Chai, K. Q., Zhu, X. M., Jiang, H., Wang, X., Xue, Q., ... & Chen, X. C. (2016). Anti-cancer effects of curcumin on lung cancer through the inhibition of EZH2 and NOTCH1. Oncotarget, 7(17), 26535-26550.
Wu, L., Li, J., Liu, T., Li, S., Feng, J., Yu, Q., ... & Guo, C. (2019). Quercetin shows anti‐tumor effect in hepatocellular carcinoma LM3 cells by abrogating JAK2/STAT3 signaling pathway. Cancer medicine, 8(10), 4806-4820.
Xiang, T., Fang, Y., & Wang, S. X. (2014). Quercetin suppresses HeLa cells by blocking PI3K/Akt pathway. Journal of Huazhong University of Science and Technology [Medical Sciences], 34(5), 740-744.
Xin, Y., Huang, Q., Zhang, P., Guo, W. W., Zhang, L. Z., & Jiang, G. (2017). Demethoxycurcumin in combination with ultraviolet radiation B induces apoptosis through the mitochondrial pathway and caspase activation in A431 and HaCaT cells. Tumor Biology, 39(6), 1010428317706216.
Yan, G., Zhang, L., Feng, C., Gong, R., Idiiatullina, E., Huang, Q., ... & Yang, L. (2018). Blue light emitting diodes irradiation causes cell death in colorectal cancer by inducing ROS production and DNA damage. The international journal of biochemistry & cell biology, 103, 81-88.
Yang, F. Q., Liu, M., Li, W., Che, J. P., Wang, G. C., & Zheng, J. H. (2015). Combination of quercetin and hyperoside inhibits prostate cancer cell growth and metastasis via regulation of microRNA 21. Molecular medicine reports, 11(2), 1085-1092.
Yang, H., Huang, S., Wei, Y., Cao, S., Pi, C., Feng, T., ... & Ren, G. (2017). Curcumin enhances the anticancer effect of 5-fluorouracil against gastric cancer through down-regulation of COX-2 and NF-κB signaling pathways. Journal of Cancer, 8(18), 3697.
Yuan, Z., Long, C., Junming, T., Qihuan, L., Youshun, Z., & Chan, Z. (2012). Quercetin-induced apoptosis of HL-60 cells by reducing PI3K/Akt. Molecular biology reports, 39(7), 7785-7793.
Zhang, H. H., Zhang, Y., Cheng, Y. N., Gong, F. L., Cao, Z. Q., Yu, L. G., & Guo, X. L. (2018). Metformin incombination with curcumin inhibits the growth, metastasis, and angiogenesis of hepatocellular carcinoma in vitro and in vivo. Molecular carcinogenesis, 57(1), 44-56.
Zhao, Z., Li, C., Xi, H., Gao, Y., & Xu, D. (2015). Curcumin induces apoptosis in pancreatic cancer cells through the induction of forkhead box O1 and inhibition of the PI3 K/Akt pathway. Molecular Medicine Reports, 12(4), 5415-5422.
Zhou, X., Wang, W., Li, P., Zheng, Z., Tu, Y., Zhang, Y., & You, T. (2016). Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in inducing gastric cancer cell apoptosis both in vitro and in vivo. Oncology Research, 24(4), 241–248.
Zhou, Y., Zheng, J., Li, Y., Xu, D. P., Li, S., Chen, Y. M., & Li, H. B. (2016). Natural polyphenols for prevention and treatment of cancer. Nutrients, 8(8), 515.
Zhu, G. H., Dai, H. P., Shen, Q., Ji, O., Zhang, Q., & Zhai, Y. L. (2016). Curcumin induces apoptosis and suppresses invasion through MAPK and MMP signaling in human monocytic leukemia SHI-1 cells. Pharmaceutical Biology, 54(8), 1303-1311.
Zou, J., Zhu, L., Jiang, X., Wang, Y., Wang, X., & Chen, B. (2018). Curcumin increases breast cancer cell sensitivity to cisplatin by decreasing FEN1 expression. Oncotarget, 9(15), 11268-11278.
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Telif Hakkı (c) 2025 Euroasia Matematik, Mühendislik, Doğa ve Tıp Bilimleri Dergisi Medical Sciences

Bu çalışma Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.