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Article Info  Abstract: Partial differential equations (PDEs), matrices, eigenvalues, and 

eigenvectors are foundational concepts in mathematics and play a critical role in various 

scientific and engineering applications. PDEs describe the relationship between 

functions of multiple variables and their partial derivatives, enabling the modeling of 

complex phenomena such as heat transfer, fluid dynamics, and electromagnetic fields. 

Eigenvalues and eigenvectors, derived from matrix theory, are essential in 

understanding the behavior of linear transformations and play a pivotal role in solving 

systems of differential equations, stability analysis, and in applications like quantum 

mechanics, structural engineering, and machine learning. Understanding these concepts 

provides a deeper insight into the structure of systems, allowing for more accurate 

predictions and optimizations in real-world problems. This study investigates the 

important role of partial differential equations (PDEs) and matrices in mechanical 

vibration systems. It presents the modeling of a two-degree-of-freedom system, which 

includes both rotational and translational motion. The vibration analysis for the given 

system is conducted using PDEs, matrices, eigenvalues, and eigenvectors. The same 

analysis, under the same conditions, is then demonstrated through a multibody physical 

model and non-linear motion equations, with computations performed in 

Simulink/MATLAB. As a result, the three methods are validated to verify the analysis. 
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1. INTRODUCTION 

Vibration analysis plays a particular role in understanding the dynamic behavior of mechanical 

systems, which is essential for designing efficient and reliable structures and machinery. This study 

explores vibration analysis by comparing mathematical models with software-based simulations of 

physical systems. Specifically, it examines how mathematical methods, such as partial differential 

equations (PDEs), matrices, eigenvalues, and eigenvectors, are used to model and analyze vibrations in 

mechanical systems. Additionally, the analysis is extended to software simulations using tools like 

Simulink and MATLAB, which provide a practical approach to verify the accuracy and effectiveness of 

theoretical models. By validating these two methods, this study aims to highlight the strengths and 

limitations of both approaches, ensuring a comprehensive understanding of vibration behavior and 

enhancing the reliability of predictions in real-world applications. 

The pendulum-spring-cart system and its dynamics have been widely studied due to its importance in 

understanding coupled mechanical systems and its applications in engineering. Researchers have 

extensively explored the behavior, control mechanisms, and energy interactions within such systems, 

employing both theoretical and experimental approaches. 

Vibration analysis is a fundamental aspect of mechanical engineering, essential for ensuring the 

reliability and performance of dynamic systems. Uncontrolled vibrations can lead to noise, fatigue, and 

even structural failure [1], [2]. To address these challenges, engineers employ mathematical models, 

particularly partial differential equations (PDEs), to describe the dynamic behavior of continuous systems 

such as beams and shafts [3]. In discrete systems, matrix methods, including eigenvalue and eigenvector 

analysis, are utilized to determine natural frequencies and mode shapes, aiding in the prediction and 

mitigation of resonance phenomena [4]. 

Amer et al. investigated the motion of a three degrees-of-freedom (DOF) damped auto-parametric 

pendulum system, focusing on its stability near resonance conditions. Their work highlighted the intricate 

interactions and energy exchanges in these systems, which are critical for stability analysis and practical 

applications in dynamic systems [5]. 

Anurag et al. studied resonant motion and chaos in a spring-mass-spherical pendulum system, 

emphasizing the sensitivity of these systems to initial conditions and the occurrence of chaotic behavior. 

Their findings underscored the need for precise modeling and control to mitigate instability in engineering 

applications [6]. 

The use of pendulum-spring systems in robotics and control systems has also been extensively 

discussed. These setups provide fundamental insights for understanding control algorithms and the 

dynamics of coupled mechanical systems. Additionally, such systems are used in educational contexts to 

demonstrate complex dynamic and control concepts [7]. 

Further studies explored the global dynamics of auto parametric spring-mass-pendulum systems, 

focusing on modal decoupling and internal resonance phenomena. These studies provided deeper insights 

into the energy transfer mechanisms and stability considerations in multi-degree-of-freedom systems, 

contributing to the theoretical understanding and practical design of such systems [8]. 

Recent advancements in computational tools have facilitated the integration of multibody dynamics 

(MBD) simulations into vibration analysis. These simulations allow for the modeling of complex systems 

with multiple degrees of freedom (DOF), capturing both translational and rotational motions [9]. For 

instance, Nguyen et al. demonstrated the effectiveness of MBD simulations in analyzing the vibrations 

of mechanical systems, highlighting the method's capability to handle intricate mechanical interactions 

[10]. Similarly, Kovacs and Ibrahim explored the relationship between MBD computations and nonlinear 

vibration theory, emphasizing the importance of incorporating system nonlinearities for accurate 

predictions [11]. 

The integration of flexible components into MBD models has further enhanced the accuracy of 

vibration analyses. Shimada and Shabana investigated impact-induced vibrations in flexible multibody 

systems, employing finite element methods to capture elastic deformations and validate their models 

experimentally [12]. Moreover, active vibration control strategies have been developed to mitigate 
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unwanted oscillations. Neto et al. proposed a control approach for spatial flexible multibody systems, 

utilizing piezoelectric materials to achieve effective vibration suppression [13]. 

These studies collectively enhance the understanding of pendulum-spring-cart systems, providing a 

foundation for the development of robust and efficient mechanical and control systems in engineering 

applications. The integration of analytical methods with experimental validations remains critical for 

advancing the field. 

In the context of two-degree-of-freedom (2-DOF) systems, combining rotational and translational 

motions present unique challenges. Accurate modeling of such systems requires a comprehensive 

approach that integrates PDEs, matrix algebra, and MBD simulations. This study focuses on developing 

a mathematical model of a 2-DOF system using PDEs and eigenvalue analysis to determine its natural 

frequencies and mode shapes. Subsequently, a corresponding multibody physical model is constructed in 

Simulink/MATLAB to simulate the system's dynamic behavior under identical conditions. By comparing 

the results from both methods and nonlinear model, the study aims to validate the theoretical model and 

demonstrate the consistency between analytical and computational approaches. 

 

2. PENDULUM-SPRING-CART SYSTEM 

Two-Degree-of-Freedom (2-DOF) system, specifically the pendulum-spring-cart model, is a 

fundamental mechanical system used to study dynamic behavior. This system is with two independent 

modes of motion, each corresponding to a distinct degree of freedom. It consists of a pendulum and a cart 

with a spring between them. The two degrees of freedom correspond to the motion of the cart along a 

horizontal axis and the angular displacement of the pendulum. This setup presents a coupled dynamic 

system where the motion of the cart influences the pendulum’s motion, and vice versa, leading to complex 

interactions that are often nonlinear in nature.  

The system studied in this work differs from the typical configuration. It consists of a pendulum 

mounted to the ground, with a spring attached to the pendulum, and a mass connected to the pendulum 

by the same spring. This setup creates a coupled dynamic system, where the motion of the pendulum 

affects the motion of the cart and vice versa. A schematic of the system is shown in figure 1. 

 

 

Figure 1. Pendulum-Spring-Cart System 

 

The system consists of two different masses and a single spring. The angular position of the pendulum 

and linear position of the cart are denoted as 𝜃 and x, respectively. The parameters a, L, m1, m2 and k 

represent spring connected length, pendulum length, the mass of pendulum sphere, mass of the cart and 

spring stiffness, respectively. Additionally, the all frictions are considered negligible. 
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3. MODELLING OF PENDULUM-SPRING-CART SYSTEM 

This section presents the mathematical and Simulink models for the system defined in the previous 

section. The first subsection derives the nonlinear and linear equations of motion for the system using the 

Lagrange’s equations. In the subsequent subsection, the Simulink multibody tool is employed to develop 

the physical model of the system. 

 

3.1. Mathematical Modelling (Equations of Motion) 

Lagrange’s equations can be stated, for an n-degree-of-freedom system, as shown in equation 1. 

 
𝑑

𝑑𝑡
(
𝜕(𝑇 − 𝑈)

𝜕𝑞̇𝑖
) −

𝜕(𝑇 − 𝑈)

𝜕𝑞𝑖
= 𝑄𝑖 , 𝑖 = 1, 2, . . , 𝑛 (1) 

Where, 𝑞̇𝑖 = 𝑑𝑞𝑖 𝑑𝑡⁄  is the generalized velocity and 𝑄𝑖  is the non-conservative generalized force 

corresponding to the generalized coordinates  𝑞𝑖 . The forces denoted by 𝑄𝑖 may include dissipative 

(damping) forces or other external forces that cannot be derived from a potential function. Lagrangian 

energy refers to the difference between the total kinetic energy T and the total potential energy U, of the 

system. 

 

3.1.1. Nonlinear Model of the System 

In the system shown in Figure 1, the mass of the cart, m1, and the moment of inertia of the pendulum, 

I, contribute to the total kinetic energy, while the springs store potential energy. Additionally, there is 

potential energy due to the gravitational acceleration, 𝑔. The expressions for the total kinetic energy and 

total potential energy are provided in equations 2 - 3, respectively.   

 

𝑇 =
1

2
𝐼𝜃̇2 +

1

2
𝑚2𝑥̇

2 (2) 

𝑈 = 𝑚1𝑔 (𝐿 − 𝐿 cos𝜃) +
1

2
𝑘(𝑥 − 𝑎 sin𝜃)2 (3) 

 

By applying the Lagrangian formulation to all generalized coordinates, the equations of motion are 

derived and presented in equation 4 - 5.  

 

𝑚1𝐿
2𝜃̈ + 𝑚1𝑔𝐿 sin𝜃 − 𝑘𝑎 cos𝜃 𝑥 + k𝑎2 sin𝜃 cos 𝜃 = 0 (4) 

𝑚2𝑥̈ + 𝑘𝑥 − 𝑘𝑎 sin 𝜃 = 0 (5) 

 

The system equations are nonlinear due to the presence of trigonometric functions. Nonlinear 

equations of motion can be written in matrix form as given in equation 6. 

 

[
𝑚1𝐿

2 0
0 𝑚2

] [𝜃̈
𝑥̈
] + [𝑚1𝑔𝐿 + 𝑘𝑎2 cos 𝜃 −𝑘𝑎 cos𝜃

−𝑘𝑎 𝑘
] [

sin𝜃
𝑥

] = [
0
0
] (6) 

 

3.1.2. Linear Model of the System 

The derived nonlinear equation in the previous subsection can be linearized for small angular 

displacement, where the approximations sin𝜃 ≈ 𝜃  and cos 𝜃 ≈ 1 based on the assumption of small 

angular displacement. Subsequently, the equations governing the linearized system are expressed in 

matrix form in equation 7. 

 

[
𝑚1𝐿

2 0
0 𝑚2

] [𝜃̈
𝑥̈
] + [𝑚1𝑔𝐿 + 𝑘𝑎2 −𝑘𝑎

−𝑘𝑎 𝑘
] [

𝜃
𝑥
] = [

0
0
] (7) 
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3.2. Physical Model of the System (Simulink / MATLAB) 

MATLAB/Simulink provides a wide range of essential tools for modeling mechanical, electrical, 

hydraulic, and other systems. Two key tools for mechanical systems are the Simscape/Foundation Library 

and Simscape/Multibody. 

There are several methods for creating Simulink models for mechanical systems. The first method of 

them is that the block diagram can be created by using Simscape/Foundation Library/Mechanical which 

includes machine elements, sensors, actuators and external forces blocks in Simulink/Simscape tool. 

One of the other method is that the system can be designed and assembled on a CAD program as 

SolidWorks. Then, the designed model can be imported to MATLAB/Simulink platform as a 

Simulink/Multibody model. 

The last method –studied in this paper– is that the bodies, springs, sensors, actuators etc., can be 

designed in Simulink/Multibody tool, directly. 

The overall model is presented in figure 2. The model comprises two interconnected subsystems: the 

pendulum subsystem and the cart subsystem, which are depicted in figures 3 and 4, respectively. 

Additionally, the Mechanical Explorer in MATLAB facilitates real-time animation of the model. A 

snapshot of the initial position configuration is provided in figure 5. 

 

 

Figure 2. Simulink Model for Overall Pendulum-Spring-Cart System 

 

 

 

Figure 3. Pendulum Subsystem Block Diagram 
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Figure 4. Cart Subsystem Block Diagram 

 

 

Figure 5. Real-time Animation Window, Initial Position Configuration 

 

4. NATURAL FREQUENCIES AND MODE SHAPES 

In the present section, three subtitles are mentioned. In the first subsection conducts eigenvalues 

which refer to natural frequencies. Then, the second subsection provides eigenvectors that refer to mode 

shapes. Response of variables of the system motion equations are obtained by using eigenvalues and 

eigenvectors in the last subsection. 

 

4.1. Natural Frequencies 

The linear equations of motion for the pendulum-spring-cart system were derived in the previous 

sections. These equations were presented in matrix form in equation 7. A simplified version of this 

equation is provided in equation 8. 

 

[𝑀] [𝑋̈] + [𝐾] [𝑋] = [0] (8) 

In this context, 𝑀 represents the mass matrix, and 𝐾 denotes the stiffness matrix. 𝑋̈ and 𝑋 are the 

acceleration and position vectors, respectively. The right-hand side of the equation is equal to zero due 

to the absence of external forces and torques. Consequently, the vector of external forces, ⌈𝜏 𝐹⌉𝑇, is 

equal to the zero vector, [0]. 
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The homogeneous second-order linear partial differential equations (PDEs) have constant 

coefficients. The roots of the motion equations, which are also referred to as the eigenvalues of the system, 

determine the solution behavior. The general solution for 𝑋(t) and its second derivative can be expressed 

as shown in equation 9.  

  

𝑋(𝑡) = 𝐴𝑒𝑖𝑤𝑛𝑡  and  𝑋̈(𝑡) = −𝐴𝑤𝑛
2𝑒𝑖𝑤𝑛𝑡  (9) 

 

Here, A represents the amplitude, i is imaginary part and t denotes time. By substituting equation 9 

into equation 8, the equation 10 is attained. It provides the responses of the position vector, eigenvalues, 

and natural frequencies, 𝑤𝑛. 

 

(−𝑤𝑛
2 [𝑀] + [𝐾])𝐴𝑒𝑖𝑤𝑛𝑡 = [0]   ,    [𝐾 − 𝑤𝑛

2𝑀] = [0] (10) 

 

To obtain characteristic equation, determinant of the equation 10, 𝑑𝑒𝑡([𝐾 − 𝑤𝑛
2𝑀]) should be zero. 

If physical parameters, 4 kg of pendulum’s mass, 6 kg of cart’s mass, 100 N/m of spring stiffness, 0.4 

meter of the length of pendulum and 0.2 meter the distance between revolute joint and spring-pendulum 

connection point is used during taking determinant, resulting characteristic equation is obtained as given 

below in equation 11. 

 

3.84𝜆𝑖
2 − 182.18𝜆𝑖 + 1569.60 = 0 (11) 

 

Also eigenvalues of the determinant function provides natural frequencies. Therefore, a relation 

equation between eigenvalues and natural frequencies can be given as 𝜆𝑖 = 𝑤𝑛𝑖
2.  However, the solution 

of the equation 11 provides eigenvalues, 𝜆1 = 11.316 and𝜆2 = 36.128. Natural frequencies for two 

generalized coordinates are 𝑤𝑛1 = 3.364 𝐻𝑧, 𝑤𝑛2 = 6.011 𝐻𝑧. 
 

4.2. Mode Shapes 

There are two modes for each natural frequency. To determine eigenvectors, the calculated natural 

frequencies substituted into equation 10 and equation 12 is obtained. 

 

[
(𝑚1𝑔𝐿 + 𝑘𝑎2 − 𝑚1𝐿

2𝑤𝑛𝑖
2)𝜃 − 𝑘𝑎𝑥

(𝑘 − 𝑚2𝑤𝑛𝑖
2)𝑥 − 𝑘𝑎𝜃

] = [
0
0
] (12) 

 

4.2.1. Mode of the First Natural Frequency(𝟑. 𝟑𝟔𝟒 𝑯𝒛) 

After using parameters into equation 12, eigenvector or mode for the first natural frequency is given in 

the equation 13. 

 

[
𝑥 − 0.623𝜃
𝑥 − 0.623𝜃

] = [
0
0
] ,  𝐴(1) = {

𝐴(1)cos (𝑤𝑛1𝑡 + ∅1)

0.623𝐴(1)cos (𝑤𝑛1𝑡 + ∅1)
} (13) 

 

4.2.2. Mode of the Second Natural Frequency(𝟔. 𝟎𝟏𝟏 𝑯𝒛) 

The same procedure to find first mode is utilized to determine the second mode. The mode equation and 

eigenvector are given below in equation 14.  

 

[
𝑥 + 0.171𝜃
𝑥 + 0.171𝜃

] = [
0
0
] ,  𝐴(2) = {

𝐴(2)cos (𝑤𝑛2𝑡 + ∅2)

−0.171𝐴(2)cos (𝑤𝑛2𝑡 + ∅2)
} (14) 
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Where, 𝐴(1) and  ∅1 are mode and phase for first nature frequency while 𝐴(2) and  ∅2 denotes mode 

and phase for second natural frequency. Mode shapes for both frequencies are given in figure 6. 

  

Figure 6. First and Second Mode Shapes 

 

4.3. Solution of Motion Equations 

In previous two subsections, eigenvalues and eigenvectors are determined. Therefore, angular and 

linear positions can written by using natural frequencies and amplitudes which are refer to eigenvalues 

and eigenvectors, respectively. The position vector is given below in equation 15. 

 

𝑋(𝑡) = [
𝐴(1) cos(𝑤𝑛1𝑡 + ∅2) + 𝐴(2) cos(𝑤𝑛2𝑡 + ∅2)

0.623𝐴(1) cos(𝑤𝑛1𝑡 + ∅1) − 0.171𝐴(2)cos (𝑤𝑛2𝑡 + ∅2)
] (15) 

 

The velocity vector is obtained if derivative of position vector with respect to time is taken. Therefore, 

four equations have been in total which included two position equations and two velocity equations. They 

provide solutions of four unknown parameters which are ∅1 ,  ∅2 , 𝐴(1) ,and 𝐴(2) . By using initial 

conditions for position vector of [5° 0.02𝑚]
𝑇

 and velocity vector of [0 0]𝑇, phases of  ∅1 and ∅2 are 

determined of zeros while modes for both natural frequencies equal to each other. Their values equal to 

0.0440. The resultant equations of positions and velocities are presented in equation 16. 

 

[
 
 
 
𝜃(𝑡)

𝑥(𝑡)

𝜃̇(𝑡)

𝑥̇(𝑡)]
 
 
 

= [

0.440 cos(3.364𝑡) + 0.440 cos(6.011𝑡)

0.027 cos(3.364𝑡) − 0.0074 cos(6.011𝑡)

−0.1480 sin(3.364𝑡) − 0.2645 sin(6.011𝑡)

−0.091 sin(3.364𝑡) + 0.045 sin(6.011𝑡)

] (16) 

 

5. RESULTS 

In the previous sections, nonlinear motion equations, linear motion equations, their natural 

frequencies, modes, eigenvalues, eigenvectors, linear equations responses were conducted profoundly. 

Then, a software physical model of the defined system was presented. In this model, links, translation 

elements, joints and sensors are utilized with their physical units. The physical parameters as mass, 

inertia, lengths, stiffness, etc., are written in the Simulink blocks. 

Same parameters and equal initial values are used for linear, nonlinear and physical models. The initial 

values for angular and linear velocities are zero while initial angular and linear displacement are 5° and 

0.02 meter, respectively.  

Here, two subsection are organized to present the responses of angular displacement, linear 

displacement, angular velocity and linear velocity for linear, nonlinear and physical models. In the first 

subsection, the positions’ responses are presented. Then, following subsection provides to see validation 

for velocities responses. 
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5.1. Positional Analysis of the Pendulum – Spring – Cart System 

There are two displacements studied for the pendulum-spring-cart system. Both angular displacement 

of pendulum and linear position of cart are analyzed. Pendulum’s angular displacement for three 

mentioned models with respect to time is given in same figure 7 while cart’s linear position for three 

model are illustrated in figure 8. The curves of physical model’s output, nonlinear model’s and linear 

model’s output are shaped with solid black line, dashed blue line and center red line.  

 

 

Figure 7. Angular Position of the Pendulum 

 

 

Figure 8. Linear Position of the Cart 
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5.2. Velocity Analysis of the Pendulum – Spring – Cart System 

Both angular velocity of pendulum and linear velocity of cart are analyzed. Pendulum’s angular 

velocity for three mentioned models with respect to time is given in same figure 9 while cart’s linear 

velocity for three models are illustrated in figure 10. The curves of physical model’s output, nonlinear 

model’s and linear model’s output are drawn with solid black line, dashed blue line and center red line.  

 

 

Figure 9. Angular Velocity of the Pendulum 

 

 

Figure 10. Linear Velocity of the Cart 
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6. CONCLUSION AND DISCUSSION 

This study has presented an analysis of the vibration behavior in a pendulum-spring-cart system using 

mathematical models and physical simulations. By solving the equations of motion for both nonlinear 

and linear cases, the theoretical results were compared with simulations created in MATLAB/Simulink. 

Important values like natural frequencies, mode shapes, and system responses were calculated and 

analyzed. The results show that both methods are effective for studying and predicting the dynamics of 

mechanical systems when the same initial conditions and parameters are used. 

The validation shows a strong agreement between the linear, nonlinear, and physical models. Small 

differences were found, mainly because of the simplifications in the linearized model and simulation 

accuracy. However, these differences are small enough to confirm the reliability of the methods used in 

this study. 

The results highlight the importance of using different methods to study vibrations in mechanical 

systems. Mathematical modeling, based on Lagrange’s equations, gives a clear theoretical understanding 

of the system. At the same time, physical simulation models help with practical insights and visual 

understanding, which are useful for real-world applications. 

One key point in the analysis was the validation of natural frequencies and mode shapes, which are 

important for checking system stability and response. The good match between mathematical and 

simulation results shows that the chosen methods and parameters are reliable. However, the linearized 

model’s use of small-angle approximations limits its accuracy for large displacements, where nonlinear 

effects become more important. 

Future studies could include damping and external forces to make the analysis more realistic. Also, 

expanding the physical model to study three-dimensional movements or different kinds of forces could 

give more detailed results. Researchers could also explore optimization methods to improve system 

performance for applications like robots or vibration control systems. 

In conclusion, this study validates the use of mathematical and simulation methods in vibration 

analysis, showing their strengths and suggesting areas for further research. 
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