

On the Relation β_{ss}^* in Module Theory

Modül Teoride β_{ss}^* Bağıntısının Temel Özellikleri

Fatih Gömleksiz 回

Amasya University, Institute of Science, Department of Mathematics, Amasya, Türkiye

Burcu Nişancı Türkmen* 匝

Amasya University, Faculty of Arts and Science, Department of Mathematics, Amasya, Türkiye

* Corresponding author: burcu.turkmen@amasya.edu.tr

Geliş Tarihi / Received: 24.05.2023 Kabul Tarihi / Accepted: 02.09.2023 Araştırma Makalesi/Research Article DOI: 10.5281/zenodo.8416074

ABSTRACT

In this study, some features of the Goldie ss-lifting modules concept and generalizations of this module class are given with the help of the relation β_{ss}^* defined in the article (Gömleksiz & Nişancı Türkmen, 2023). In this relation $X\beta_{ss}^*Y$, which is defined as submodules X and Y of the module H provided that $\frac{X+Y}{X} \subseteq \frac{Soc_s(H)+X}{X}$ and $\frac{X+Y}{Y} \subseteq \frac{Soc_s(H)+Y}{Y}$ is determined by conditions. The important properties of this relation in Goldie-ss-lifting modules have been studied. In this article, Goldie-sssupplemented modules are considered as a special case of Goldie*-supplemented modules and Goldie-ss-lifting modules are considered as a special case of Goldie*-lifting modules, and the basic module structure theorems are included with the help of the relation β_{ss}^* , which is more special than the relation β^* . The classification of the ss-semi-local modules was made using the relation β_{ss}^* . It has been proved that the factor modules of Goldie-ss-supplemented modules are also Goldie-sssupplemented modules. It has been shown that $S_{\beta_{ss}^*}(H)$, which is the set of equivalence classes according to the relation β_{ss}^* for submodules of a module *H*, has a monoid structure. With the help of fully invariant submodules, it has been shown that every direct summand of a Goldie-sssupplemented module is a Goldie-ss-supplemented module. In addition, ss-supplemented modules and Goldie-ss-supplemented modules classes, and ss-lifting modules and Goldie-ss-lifting modules classes were compared.

Keywords: The Relation β_{ss}^* , Goldie-ss-Lifting Module, Goldie-ss-Supplemented Module

ÖZET

Bu çalışmada, Goldie ss-yükseltilebilir modüller kavramının birtakım özellikleri ve bu modül genellemeleri (Gömleksiz Nişancı 2023) sınıfının ve Türkmen, adlı makalede tanımlanan β_{ss}^* bağıntısı yardımıyla verilmiştir. Bu bağıntıda $X\beta_{ss}^*Y$ olarak tanımlanan Hmodülünün X ve Y alt modülleri için $\frac{X+Y}{X} \subseteq \frac{Des_s(H)+X}{X}$ ve $\frac{X+Y}{Y} \subseteq \frac{Des_s(H)+Y}{Y}$ koşulları ile belirlenmiştir. Bu bağıntının Goldie-ss-yükseltilebilir modüllerdeki önemli özellikleri incelenmiştir. Bu makalede, Goldie-ss-tümlenmiş modüller Goldie*-tümlenmiş modüllerin bir özel hali ve Goldie-ssyükseltilebilir modülleri de Goldie*-yükseltilebilir modüllerin bir özel hali olarak ele alınarak β^* bağıntısından daha özel olan β_{ss}^* bağıntısı yardımıyla temel modül yapı teoremlerine yer verilmiştir. Ss-yarıyerel modüllerin β_{ss}^* bağıntısı kullanılarak sınıflandırılması yapılmıştır. Goldie-ss-tümlenmiş modüllerin bölüm modüllerinin de Goldie-ss-tümlenmiş modüller olduğu ispatlanmıştır. Bir H modülünün alt modülleri için β_{ss}^* bağıntısına göre denklik sınıflarının kümesi olan $S_{\beta_{ss}^*}(H)$ ının bir monoid yapısına sahip olduğu gösterilmiştir. Karakteristik alt modüller yardımıyla Goldie-sstümlenmiş bir modülün her direkt toplam teriminin Goldie-ss-tümlenmiş modül olduğu gösterilmiştir.

Ayrıca ss-tümlenmiş modüller ile Goldie-ss-tümlenmiş modüllerin sınıfları, ve ss-yükseltilebilir modüller ile Goldie-ss-yükseltilebilir modüllerin sınıfları mukayese edilmiştir.

Anahtar kelimeler: β_{ss}^* bağıntısı, Goldie-ss-Yükseltilebilir Modül, Goldie-ss-Tümlenmiş Modül

1. INTRODUCTION

In this work, *R* denotes as an associative ring with unit element 1_R , and the modules situated unitary left *R*-modules. For a module *H*, we use $N \le H$ to denote *N* is a submodule of *H*. *Rad*(*H*) will denote the Jacobson radical of *H*. A submodule $K \subseteq H$ is said to be *small* in *H* (denoted by the $K \ll H$) if $N + K \ne H$ for any proper submodule *N* of *H*. Lifting modules and variations were studied by many authors (see (Clark et. al., 2006), (Eryılmaz, 2021). Following (Clark et. al., 2006, we call a module *H lifting* if for each $N \subseteq H$ there is a direct summand *K* of *H* so that $K \subseteq N$ and $N/K \ll H/K$. A module *M* is said to be *supplemented* if for each $N \subseteq H$, there is $K \subseteq H$ so that H = N + K and $N \cap K \ll K$ (in this stage *K* is a supplement of *N* in *H*). A module *H* is said to be *semilocal* if for every submodule *N* of *H*, there is a $L \subseteq H$ such that N + L is equal to *H* and $N \cap L \ll H$. According to (Eryılmaz, 2020), a module *H* is said to be *ss-lifting* if for each $N \subseteq H$ there is a direct summand *K* of *H* such that $K \subseteq N$ and $N/K \subseteq Soc_s(H/K)$, where $Soc_s(X)$ is the sum of all simple submodules which are small in a module *X*. A module *H* is said to be *ss-supplemented* if its submodules have an ss-supplement in *H*. Let $K, L \leq H$. *K* is said to be a *(weak) ss-supplemented* if its satistical to be *ss-semilocal* if its submodules have an weak ss-supplement in *H* (Olgun & Türkmen, 2020).

By S(H) we denote the set of all submodules of a module *H*. Then $X, Y \in S(H)$ over the set S(H) relation β^* is defined as follows. " $X\beta^*Y \Leftrightarrow (X + Y)/Y \ll H/Y$) and $(X + Y)/X \ll H/X$ ". Let *H* be a module. If for each submodule $X \subseteq H X\beta^*Y$ thus, if a direct summand *D* of *H* can be found, then the module *H*, Goldie*-lifting. Let *H* be a module. If for each $X \subseteq H$ submodule there will be a supplement *S* of *X* such that $X\beta^*S$, then *H* is said to be *Goldie*-supplemented*.

In (Gömleksiz & Nişancı Türkmen, 2023), it is defined Goldie-ss-supplemented and Goldie-ss-lifting modules based on the definition of the relation β_{ss}^* . Let $X, Y \subseteq H$ be modules. It is said to be X and Y are equivalent by the relation $\beta_{ss}^*, X\beta_{ss}^*Y$ providing the conditions the $\frac{X+Y}{X} \subseteq \frac{Soc_s(H)+X}{X}$ and $\frac{X+Y}{Y} \subseteq \frac{Soc_s(H)+X}{Y}$ for X and Y submodules taken in the set of submodules of H. A module H is said to be *Goldie-ss-supplemented* if for each $\subseteq H$, there is a submodule S of H with $N\beta_{ss}^*S$, where S is an ss-supplement in H. A module H is called *Goldie-ss-lifting* (resp., (P_{ss}^*)) if for any $N \subseteq H$, there exists an ss-supplement submodule (a direct summand) D of H so that $N\beta_{ss}^*D$ (resp., $\frac{N}{D} \subseteq Soc_s(\frac{H}{D}), D \leq N$). Clearly every (P_{ss}^*) -module is Goldie-ss-lifting and every Goldie-ss-lifting module is Goldie-ss-supplemented.

2. MATERIALS AND METHODS

In this section, the main features of the relation β_{ss}^* that we will give in the main part of our study will be given by quoting from the reference (Gömleksiz & Nişancı Türkmen, 2023).

Theorem 2.1. Let *H* be a module and $X, Y \subseteq H$. In this case, the following expressions are equivalent. (1) $X\beta_{ss}^*Y$,

(2) There are equations X + A = H and Y + A = H for each submodule of the module H satisfying the condition X + Y + A,

(3) Let X and Y be semisimple submodules of H be given, Y + K = H for every $K \subseteq H$ satisfying the conditions the sum X + K is H. Also the sum X + Z is H for every $Z \subseteq H$ satisfying the condition Y + Z = H.

Proof. (1) \Rightarrow (2) Let $X\beta_{ss}^*Y$. Let's take any submodule *A* of *H* with X + Y + A = H. It follows from X + Y + A = H that (X + Y)/Y + (A + Y)/Y is H/Y. By the hypothesis, $(X + Y)/Y \subseteq Soc_s(H/Y)$. So we get Y + A = H is found. Similarly, it can be shown that X + A = H.

 $(2)\Rightarrow(3)$ Let's take any submodule $K \subseteq H$ satisfying the condition X + K = H. Then X + K + Y = H can be written and Y + K = H is found from the hypothesis. Similarly let's take any submodule $L \subseteq H$ that satisfies the condition Y + L = H. Here X + L + Y = H can be written and again X + L = H is found from the hypothesis.

 $(3) \Rightarrow (2)$ Let's take any submodule A of H that satisfies the condition X + Y + A = H. If X + (Y + A) = H is taken as (3) Y + (Y + A) = H can be written. From here, the result is Y + A = H. If the roles of X and Y are changed in the steps, it can be shown that X + A = H similarly.

 $(3) \Rightarrow (1)$ It follows from $(X + Y)/Y \subseteq Soc_s(H/Y)$ and $(X + Y)/X \subseteq Soc_s(H/X)$ that $(X + Y)/Y \ll H/Y$ and $(X + Y)/X \ll H/X$. Since submodules X and Y are semisimple, factor modules (X + Y)/Y, (X + Y)/X are semisimple by 8.1.5. Corollary 2 in (Kasch, 1982). Let's take the submodule $B/Y \subseteq H/Y$ with (X + Y)/Y + B/Y = H/Y. In this case X + Y + B = H and since $Y \subseteq B$, we have the sum X + B is H. From hypothesis, the sum Y + B is H. As $Y \subseteq B$, we obtain that B = H. Thus, the result $(X + Y)/Y \ll H/Y$ is reached. It can also be shown to be $(X + Y)/X \ll H/X$ with similar operations. Thus $(X + Y)/Y \subseteq Soc_s(H/Y)$ and $(X + Y)/X \subseteq Soc_s(H/X)$ are obtained.

Example 2.2. (*i*) Two modules isomorphic to each other in any *S*-module β_{ss}^* may not be equivalent according to the relation. For example, $S = \{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \mid a, b, c \in F \}$, where *F* is field. Let's take ${}_{s}S$. Then submodules $X = \begin{bmatrix} 0 & F \\ 0 & 0 \end{bmatrix}$ and $Y = \begin{bmatrix} 0 & 0 \\ 0 & F \end{bmatrix}$ are isomorphic. But they are not equivalent according to the relation β_{ss}^* .

(*ii*) Given $\mathbb{Z} \times \mathbb{Z}$. Therefore $\mathbb{Z} \times \{0\}$ and $\{0\} \times \mathbb{Z}$ are also isomorphic to each other. On the other hand, they are not equivalent according to the relation β_{ss}^* .

Corollary 2.3. The set of small semisimple submodules in a module *H* form a unique equivalence class according to the relation β_{ss}^* .

Theorem 2.4. Let $X, Y \subseteq H$ be modules. If $X\beta_{ss}^*Y$, then submodules X and Y of H are ss-supplement of each other.

Proof. Suppose the submodule $U \subseteq H$ is an ss-supplement of *X*. Since $X\beta_{ss}^*Y$, then Y + U = H according to Theorem 2.1. It can be shown that the submodule $U \subseteq H$ is an bir ss-supplement of *Y*, let's take a submodule $V \subseteq U$ with Y + V = H. In this case, since $X\beta_{ss}^*$, then X + V = H according to Theorem 2.1. From here, since the submodule *U* is an ss-supplement of *X* and $V \subseteq U$, then we have $X \cap U$ is semisimple by 8.1.5.Corollary 1 in (Kasch, 1982). It follows that $X \cap V$ is semisimple.

Therefore the submodule *U* is also an ss-supplement of *Y*. Also since the relation β_{ss}^* is symmetric, similarly the ss-supplemented of *Y* is also the ss-supplemented of *X*.

Theorem 2.5. Let X and Y be semisimple submodules of a module H with $J \subseteq Soc_s(H)$. Then $X\beta_{ss}^*Y \Leftrightarrow X\beta_{ss}^*(Y+J)$.

Proof. (\Rightarrow) : Let's assume that $X\beta_{ss}^*Y$. Let's take any submodule $K \subseteq M$ satisfying H = X + (Y + J) + K. Since H = X + (Y + J) + K and $J \subseteq Soc_s(H)$, the equality H = X + Y + K is obtained. Consider that H = X + Y + K and $X\beta_{ss}^*Y$ are obtained Theorem 2.1. H = X + K and H = Y + K are obtained. From here, the result of H = X + K and H = (Y + J) + K is reached. Again, according to Theorem 2.1., $X\beta_{ss}^*(Y + J)$ is found.

(⇐) : Let's assume that $X\beta_{ss}^*(Y + J)$. Let's take any submodule $K \subseteq H$ satisfying H = X + Y + K. In this case H = X + (Y + J) + K can be written. Also, since $X\beta_{ss}^*(Y + J)$ according to Theorem 2.1. H = X + K and H = (Y + J) + K are found. By acception $J \subseteq Soc_s(H)$, the result is H = Y + K. Then $X\beta_{ss}^*Y$ is obtained according to Theorem 2.1.

Theorem 2.6. Let *H* be a module with $Soc_s(H) = \{0\}$. If there is a decomposition $H = H_1 \bigoplus H_2$ for the submodule H_1 of *H* and the semisimple submodule H_2 of *H*, then $X \subseteq H$ and $X\beta_{ss}^*H_1$ with $H = H_2 \bigoplus X$.

Proof. Let's assume is $X\beta_{ss}^*H_1$. From the equation $H = H_1 \bigoplus H_2$, the submodule H_2 is an sssupplement of H_1 . Since $X\beta_{ss}^*H_1$, the semisimple submodule H_2 is also an ss-supplement of Xaccording to Theorem 2.4. So $H = H_2 + X$ and $H_2 \cap X \ll M_2$ can be written. Since H_2 semisimple, so is $H_2 \cap X$. Hence is $H_2 \cap X \subseteq Soc_s(H)$. By the hypothesis $Soc_s(H) = \{0\}, H_2 \cap X \subseteq Soc_s(H) = \{0\}$ with $H = H_2 \oplus X$.

Theorem 2.7. Let *S* be a semisimple submodule of an *R*-module *H* and let *I* be an ideal of *R*. Then $IS\beta_{ss}^*I^nS$ for every $n \in \mathbb{Z}^+$. In addition, for every $n \in \mathbb{Z}^+$, it satisfied that $I\beta_{ss}^*I^n$.

Proof. Let's apply the proof by induction on n so that n = 1. Then $IS\beta_{ss}^*IS$ is provided since β_{ss}^* is the reflexive relation. Let us now assume that the claim is true for n > 1. Suppose we take $B \subseteq H$ such that $IS/I^nS + B/I^nS = H/I^nS$. In this case IS + B = H. From here, there are the equations $I^2S + IB = IH, ..., I^nS + I^{n-1}B = I^{n-1}H$. Using these equations, $H = IS + B \subseteq IH + B = I^2S + IB + B \subseteq I^2H + IB + B = I^3S + I^2B + IB + B \subseteq ... \subseteq I^nS + I^{n-1}B + ... + IB + B \subseteq I^nS + B \subseteq H$. Thus $B/I^nS = H/I^nS$. Then we have $(IS + I^nS)/I^nS \ll H/I^nS$ and $(IS + I^nS)/IS = \{0_{H/IS}\} \ll H/IS$. Also $(IS + I^nS)/I^nS$ is semisimple, since S is semisimple according to the (Kasch, 1982) in Corollary 3. So since $IS + I^nS/IS \subseteq Soc_s(H/IS)$ and $IS + I^nS/I^nS \subseteq Soc_s(H/I^nS)$ is $IS\beta_{ss}^*I^nS$.

3. RESULTS AND DISCUSSION

Proposition 3.1. Given a ss-semilocal module *H*. Then its semisimple submodule are equivalent to an ss-semilocal submodules of *H* by the relation β_{ss}^* .

Proof. Let *H* be an ss-semilocal module. Let's take any semisimple submodule *X* of *H*. Since *H* is sssemilocal, there is a submodule $Z \subseteq H$ so that X + Z = h and $X \cap Z \subseteq Soc_s(H)$. Here *X* is also a weak ss-supplement of *Z*. Also $X\beta_{ss}^*X$ can be written since the relation β_{ss}^* has reflexive property. As a result, every semisimple submodule of *h* is equivalent to an ss-semilocal submodule of *H*.

Lemma 3.2. (See (Gömleksiz & Nişancı Türkmen, 2023)) Let $X_1, X_2, Y_1, Y_2 \subseteq h$, such that $X_1\beta_{ss}^*Y_1$ and $X_2\beta_{ss}^*Y_2$. Then $(X_1 + X_2)\beta_{ss}^*(Y_1 + Y_2)$ and $(X_1 + Y_2)\beta_{ss}^*(Y_1 + X_2)$.

Proof. Suppose that $X_1\beta_{ss}^*Y_1$ and $X_2\beta_{ss}^*Y_2$. Then $X_1 + Y_1 \subseteq Soc_s(H) + X_1$, $X_1 + Y_1 \subseteq Soc_s(H) + Y_1$, $X_2 + Y_2 \subseteq Soc_s(H) + X_2$ and $X_2 + Y_2 \subseteq Soc_s(H) + Y_2$. Hence by using above inclusions, we can easily see that $(X_1 + X_2)\beta_{ss}^*(Y_1 + Y_2)$ and $(X_1 + Y_2)\beta_{ss}^*(Y_1 + X_2)$.

Corollary 3.3. Let *H* be a module. If a least one small semisimple submodule *L* of *H* which satisfies the equations X + L = Z + L = X + Z for every ss-semilocal semisimple submodule *X* of *H* and a ss-semilocal *Z* of *H*, then $X\beta_{ss}^*(X + Z)$ and $Z\beta_{ss}^*(Z + X)$.

Proof. Let's assume that module *H* is ss-semilocal. By Proposition 3.1, a module *H* has a weak sssupplement *Z* so that $\forall X \subseteq H$ is $X\beta_{ss}^*Z$ for the semisimple submodule. In this case, a submodule $W \subseteq H$ can be found such that Z + W = H and $Z \cap W \subseteq Soc_s(H)$. According to Lemma 3.2, we have $X\beta_{ss}^*(X + Z)$ and $Z\beta_{ss}^*(Z + X)$.

Remark 3.4. In Lemma 3.2, the finite sum is extensible, but infinite sum cannot be extended. For example, let's take $R = \mathbb{Z}$ and $H = \mathbb{Q}$. We know that $Soc_s(\mathbb{Q}) = \mathbb{Q} = \sum_{m \in \mathbb{Z}^+} \mathbb{Z} \frac{1}{m}$. Here $\mathbb{Z} \frac{1}{m} \beta_{ss}^* \{0\}$, since $\mathbb{Z} \frac{1}{m} \subseteq Soc_s(\mathbb{Q})$ for every $m \in \mathbb{Z}^+$. If Lemma 3.2 was satisfied in countable sums, then $\mathbb{Q} = \sum_{m \in \mathbb{Z}^+} \mathbb{Z} \frac{1}{m} \beta_{ss}^* \{0\}$. This would introduce the contradiction $\mathbb{Q} \subseteq Soc_s(\mathbb{Q})$.

Definition 3.5. Let *H* be a module. According to the relation β_{ss}^* , the submodule of *H* let's denote the set of equivalence classes with $S_{\beta_{ss}^*}(H)$. That is $S_{\beta_{ss}^*}(H) = \{\overline{X}_{\beta_{ss}^*} | X \subseteq H\}$ where is $\overline{X}_{\beta_{ss}^*} = \{Y | X \beta_{ss}^* Y\}$.

Theorem 3.6. $S_{\beta_{cc}^*}(H)$ has a monoid structure.

Proof. It is clear that a binary operation $+: S_{\beta_{ss}^*}(H) \times S_{\beta_{ss}^*}(H) \to S_{\beta_{ss}^*}(H)$ is defined by $(\bar{X}_{\beta_{ss}^*}, \bar{Y}_{\beta_{ss}^*}) \in S_{\beta_{ss}^*}(H) \times S_{\beta_{ss}^*}(H)$ with $\bar{X}_{\beta_{ss}^*} + \bar{Y}_{\beta_{ss}^*} = (\overline{X+Y})_{\beta_{ss}^*}$. Then + has the associative property. So $\bar{0}_{\beta_{ss}^*} \in S_{\beta_{ss}^*}(H)$ is the unitary element according to this operation. So $S_{\beta_{ss}^*}(H)$ has a monoid structure.

Lemma 3.7. Given the decomposition of modules $K = A \oplus B$. For $X, S \subseteq A$, if $S\beta_{ss}^* X$ in K, then $S\beta_{ss}^* X$ in A.

Proof. Let's take a submodule $L \subseteq A$ so that X + L = A. In this case, $(X + L) \oplus B = K$. From here $X + (L \oplus B) = K$ can be written. According to Theorem 2.1 (1 \Leftrightarrow 3), since $S\beta_{ss}^*X$ in K, it can be written $S + (L \oplus B) = K$. Therefore, there exists the decomposition $(S + L) \oplus B = K$. And since $K = A \oplus B$, S + L = A is found. Similarly, according to Theorem 2.1 (1 \Leftrightarrow 3), since X + W = A will be in every submodule $W \subseteq A$ satisfying the equation S + W = A. Then we have $S\beta_{ss}^*X$ in A.

It follows from (Wisbauer, 1991) that a submodule W of H is said to be *fully invariant* if $g(W) \subseteq W$ for each $g \in End(H)$. Elements e_1 , e_2 of a ring R is said to be *orthogonal idempotent* if $e_1^2 = 0_R$, $e_2^2 = 0_R$ and $e_1e_2 = 1_R$.

Theorem 3.8. Let A = aH, B = bH and $H = A \oplus B$, where *H* is a module and the set $\{a, b\}$ is a collection of orthogonal idempotents of End(H). Also, each submodule $X \subseteq H$ can be written as X = aX + bX (especially, X is fully invariant). In this case, module *H* is Goldie-ss-supplemented iff modules *A* and *B* are Goldie-ss-supplemented.

Proof. (\Rightarrow) Let *H* module be Goldie-ss-supplemented. Let's first take an arbitrary submodule $X \subseteq H$. Since the module *H* is Goldie-ss-supplemented, there is an ss-supplemented submodule *S* in *H* such that $X\beta_{ss}^*S$. So there is a $L \subseteq H$ so that H = S + L, $S \cap L \subseteq Soc_s(L)$. Since H = S + L and $X\beta_{ss}^*S$, then it is obvious that *M* is X + L. Since L = aL + bL, it follows the hypothesis that X + aL + bL is *H*. Since it is known that $X + aL \subseteq A$ and $bL \leq B$, the equations H = X + aL + B and H = A + bL can be written. Also, since $H = A \oplus B$, then A = X + aL and B = bL are found. Again, since B = bH, $bS \subseteq bH = bL \subseteq L$ by the hypothesis. From here, H = S + L = aS + bS + L = aS + L. Since $aS \subseteq S$ and *S* is a supplement of *L* in *H*, we deduce that *aS* is *S*. Therefore, in the module *H*, $X\beta_{ss}^*aS$. $aS \subseteq A$, $X\beta_{ss}^*aS$ is satisfied in module *A* due to Lemma 3.7. On the other hand, it is clear that A = aS + aL. Here $(aS \cap aL) \ll S = aS$ by (Wisbauer, 1991). By (Kasch, 1982) in 8.1.5, a submodule $aS \cap aL$ is also semisimple. A semisimple submodule aS of *A* is also an ss-supplemented. Thus, *A* Goldie-ss-supplemented. Similarly, it can be shown that *B* is Goldie-ss-supplemented.

(⇐): It is shown that an arbitrary submodule *U* of the module *H*, with submodules *A* and *B* being Goldie-ss-supplemented. Let's assume that $U_1 = aU$ and $U_2 = bU$. Since $U_1 \subseteq A$ and *A* are Goldie-ss-supplemented, *A* has a ss-supplement submodule S_1 with $U_1\beta_{ss}^*S_1$. Then according to Theorem 2.1(1⇔3) there is submodule L_1 such that $L_1 \cap S_1$ is semisimple such that $L_1 + S_1 = A$ and $L_1 \cap S_1 \ll S_1$. Since *B* has a ss-supplement submodule S_2 so that $U_2\beta_{ss}^*S_2$ and $L_2 \subseteq B$ the submodule $L_2 + S_2 = B$ and $L_2 \cap S_2 \ll S_2$ and $L_2 \cap S_2$ semisimple. According to (Gömleksiz & Nişancı Türkmen, 2023) in Proposition 2.6, $U = (U_1 + U_2)\beta_{ss}^*(S_1 + S_2)$ can be written. Moreover, it can be shown that $H = S_1 + S_2 + L_1 + S_2$ and $(S_1 + S_2) \cap (L_1 + L_2)$ is equal to $(S_1 \cap L_1) + (S_2 \cap L_2)$. Also, since $L_1 \cap S_1$ is small in S_1 and $L_2 \cap S_2$ is small in S_2 . Then we have $(S_1 + S_2) \cap (L_1 + L_2) = (S_1 \cap L_1) + (S_2 \cap L_2) \ll (S_1 + S_2) \cap (L_1 + L_2)$ is also a semisimple submodule of $S_1 + S_2$ by (Kasch, 1982). So $S_1 + S_2$ is an ss-supplement of $L_1 + L_2$ in *H* as a result, *H* is Goldie-ss-supplemented.

Theorem 3.9. Let *H* be a Goldie-ss-supplemented module and $X \subseteq H$. Then H/X is Goldie-ss-supplemented.

Proof. Let's take an arbitrary submodule $N/X \subseteq H/X$ with $X \subseteq N \subseteq H$. Since $N \subseteq H$ and H are Goldie-ss-supplemented, H has an ss-supplement submodule S with $N\beta_{ss}^*S$. Let's take any submodule $L/X \subseteq H/X$ that satisfies the sum N/X + L/X is H/X. In this case, there is the equality N + L = H and since $N\beta_{ss}^*S$, then S + L is equal to H according to Theorem 2.1(1 \Rightarrow 3). From here, the result (S + X)/X + L/X = H/X is reached. Similarly, the equality N/X + L/X = H/X is provided for each submodule $L/X \subseteq H/X$ providing the sum (S + X)/X + L/X is H/X. It follows from (Gömleksiz & Nişancı Türkmen, 2023) in Proposition 3.1 that $N/X\beta_{ss}^*(S + X)/X$. Thus, (S + X)/X is also an ss-supplement submodule N/X in the factor module H/X. Hence, the H/X is Goldie-ss-supplemented.

Lemma 3.10. Let *H* be a module and $L \subseteq U \subseteq H$. If the semisimple submodule *U* of *H* lifts onto the semisimple submodule *L*, then $U\beta_{ss}^*L$.

Proof. If U lifts onto the submodule L in M, for every $N \subseteq H$ that satisfies the equation U + N is equal to H. Then the sum L + N is H by (Clark et al., 2006). In addition, since $L \subseteq U$, it is obvious

that the sum U + N is H for every $K \subseteq H$ which satisfies the sum L + K is H. Hence by Theorem 2.1. $U\beta_{ss}^*L$ is obtained accordingly.

Corollary 3.11. Let *H* be an ss-lifting module. Then *H* is Goldie-ss-lifting.

Proof. Let *H* be ss-lifting. By the definition, there is a decomposition for every submodule *A* of *H* with $H = H_1 \bigoplus H_2$ such that $H_1 \subseteq A$ and $A \cap H_2 \subseteq Soc_s(H)$, from which $Soc_s(H) = Soc(H) \cap Rad(H)$. Since *H* is ss-lifting each submodule can be lifting on a direct summand. Therefore, each submodule of the module *H* is equivalent to a direct summand in accordance with Lemma 3.10. So the module *H* is Goldie-ss-lifting.

Theorem 3.12. Let *H* be an Goldie-ss-lifting module and *X* be a submodule of *H*. Then the factor module $\frac{H}{X}$ is Goldie-ss-lifting also if $\frac{X+K}{X}$ is the direct summand of $\frac{H}{X}$ for each direct summand *K* of *H*.

Proof. Let $\frac{N}{x} \leq \frac{H}{x}$. Since *H* is a Goldie-ss-lifting module, *H* has direct summand *K* with $N\beta_{ss}^*K$. Since $N\beta_{ss}^*K$, then $\frac{N+K}{K} \subseteq Soc_s\left(\frac{H}{K}\right)$ and $\frac{N+K}{N} \subseteq Soc_s\left(\frac{H}{N}\right)$. From here, $\frac{\frac{H}{X}}{\frac{N}{X}} \cong \frac{H}{N}$, $\frac{\frac{N+K+X}{X}}{\frac{N}{X}} = \frac{\frac{N+K+X}{X}}{\frac{N}{X}} = \frac{N+K+X}{\frac{N}{X}} = \frac{N+K+X}{\frac{N}{X}} = \frac{N+K+X}{\frac{N}{X}} = \frac{N+K+X}{\frac{N}{X}} = \frac{N+K}{\frac{N+K}{X}} = \frac{N+K}{\frac{N+K}{X}} = \frac{N+K}{\frac{N+K}{X}} = \frac{N+K}{\frac{N+K}{X}} = \frac{N+K}{\frac{N+K}{X}} = \frac{N+K}{\frac{N+K}{X}} = \frac{N+K}{\frac{N+K}{K}}$. Since $\frac{N+K}{N}$ is small in $\frac{H}{N}$ and $\frac{N+K}{\frac{N}{X}} = \frac{N+K+X}{\frac{N}{X}} = \frac{N+K}{\frac{K+X}{X}} = \frac{N+K}{\frac{K+X}{X}} = \frac{N+K}{\frac{K+X}{K}} = \frac{N+K}{\frac{K+X}{K}}$. Since $\frac{N+K}{N}$ is small in $\frac{H}{N}$ and $\frac{N+K}{\frac{N}{X}} = Soc_s\left(\frac{H}{\frac{N}{X}}\right)$. Then $\frac{N+K}{K} \ll \frac{H}{K}$ and $\frac{N+K}{K}$ are semisimple, the factor modules of $\frac{N+K}{K}$, $\frac{\frac{N+K+X}{X+K}}{\frac{X+K}{X}} \ll \frac{H}{\frac{X+K}{X}}$ and $\frac{\frac{N+K+X}{X+K}}{\frac{X+K}{X}}$. Thus $\frac{\frac{N}{X}+\frac{K+X}{X}}{\frac{N}{X}} \subseteq Soc_s\left(\frac{H}{\frac{N}{X}}\right)$ and $\frac{\frac{N+K+X}{K+X}}{\frac{K+X}{K}} \subseteq Soc_s\left(\frac{H}{\frac{K+X}{K}}\right)$ are according to the hypothesis, $\frac{H}{X}$ is a Goldie-ss-lifting module.

Corollary 3.13. Given a Goldie-ss-lifting module *H*.

(i) If *H* is distributive, the factor module $\frac{H}{x}$ is Goldie-ss-lifting module for each $X \subseteq H$. (ii) Let $X \subseteq H$ and each element $e = e^2 \in End(M)$ satisfies the condition $e(X) \subseteq X$. Then the factor module $\frac{H}{x}$ is Goldie-ss-lifting.

Proof. (i) Since *H* is a Goldie-ss-lifting module, *M* has a direct summand *D* with $X\beta_{ss}^*D$. Since $X\beta_{ss}^*D$, it is $\frac{X+D}{D} \subseteq Soc_s\left(\frac{H}{D}\right)$ and $\frac{X+D}{X} \subseteq Soc_s\left(\frac{H}{X}\right)$. Here there is a submodule $D' \subseteq H$ with $H = D \oplus D'$. Then the equation $\frac{H}{X} = \frac{D+X}{X} + \frac{D'+X}{X}$ can be written. Since *M* is distributive, then $X = X + (D \cap D') = (X + D) \cap (X + D')$ is obtained. So the direct sum $\frac{(D+X)}{X} \oplus \frac{(D'+X)}{X}$ is $\frac{H}{X}$. For each direct summand *D* of $H, \frac{D+X}{X}$ is a direct summand of $\frac{H}{X}$. By Theorem 3.12, the factor module $\frac{H}{X}$ is Goldie-ss-lifting.

(ii) Let *D* be an arbitrary direct summand of *H*. Let's consider the canonical projection $e: H \to D$. In this case $e^2 = e \in End(H)$. Since $e(X) \subseteq X$ in the hypothesis, $e(X) = X \cap D$ is satisfies. Also, since *D* is a direct summand of *H*, we can write $H = D \oplus D'$ for some $D' \subseteq H$. That is, the equation $X = (X \cap D) \oplus (X \cap D')$ can be written. Then we have $\frac{D+X}{X} = \frac{[D \oplus (X \cap D')]}{X}$ and $\frac{(D'+X)}{X} = \frac{[D' \oplus (X \cap D)]}{X}$

are obtained. Therefore, $\frac{H}{x} = \frac{(D+X)}{x} + \frac{(D'+X)}{x} = \frac{[D\oplus(X\cap D')]}{x} + \frac{(D'+X)}{x}$ is found. It can be shown from $(D\oplus(X\cap D')) \cap (D'+X) = X$ that $\frac{H}{x} = \frac{[D\oplus(X\cap D')]}{x} \oplus \frac{(D'+X)}{x}$. By Theorem 3.12 the factor module $\frac{H}{x}$ is Goldie-ss-lifting, as required.

Proposition 3.14 Let *H* be a Goldie-ss-lifting module. Then *H* is a Goldie*-lifting module. If $Soc_s(H) \ll H$, then the converse holds.

Proof. Let *H* be a Goldie-ss-lifting module. $H = D \oplus D'$ so that $(N + D)/N \subseteq Soc_s(H/N)$ and $(N+D)/D \subseteq Soc_s(H/d)$ for any submodule N of H. Therefore $(N+D)/N \ll H/N$ and $(N+D)/N \ll H/N$ D)/ $D \ll H/D$. So H is a Goldie*-lifting module. Conversely, let $N \subseteq H$. By assumption, H has a decomposition $H = D \oplus D'$ so that $(N + D)/N \ll H/N$ and $(N+D)/D \ll H/D$. Then H = D + D' = N + D'and $(N+D)/D \subseteq (Soc_s(H)+D)/D$. Let $\theta: (D+D')/D \to D', \psi: D'/(N \cap D') \to (N+D')/N$ he isomorphisms and $f: D' \to D'/(N \cap D')$ be an epimorphism. Set $h = \psi f \theta$. By a similar argument to (Gömleksiz & Nişancı Türkmen, 2023) in Proposition 2.6, (N + D)/N = h((N + D)/D). Since $(N + D)/D \subseteq$ $(Soc_s(H) + D)/D$, we have $(N + D)/N \subseteq h(Soc_s(H) + D)/N$. Hence, H is a Goldie-ss-lifting module.

4. CONCLUSION

In this paper, we have considered the Goldie-ss-lifting modules as a specialized notion of Goldie*lifting modules. In particular, it is obtained fundamental module structure theorems by the help of a relation β_{ss}^* that is more special than β^* .

REFERENCES

Alkan, M. (2009). On τ - lifting Modules and τ - semiperfect Modules, *Turkish Journal of Mathematics*, **33**, 117–130.

Birkenmeier G.F., Mutlu, F.T. C Nebiyev, N Sokmez, A Tercan (2010). Glasgow Mathematical Journal **52** (A), 41-52.

Clark, C., Lomp, C., Vanaja, N., Wisbauer, R., (2006). Lifting Modules. Birkhäuser

Verlag, Basel-Boston-Berlin.

Eryılmaz, F. (2021). SS-Lifting Modules and Rings, *Miskolc Mathematical Notes*, 22 (2), 655–662.

Gömleksiz, F. & Nişancı Türkmen, B. (2023). Goldie SS-supplemented Modules, *Montes Taurus J. Pure Appl. Math.*, **5** (1), 65–70.

Kasch, F. (1982). *Modules and Rings*. Published for the London Mathematical Society byAcademic Press Inc. (London) Ltd.,372.

Kaynar, E., Çalışıcı, H. & Türkmen, E. (2020) SS- Supplemented Modules. Communications

Faculty of Sciences University of Ankara Series A1 Mathematics Statistics, 69(1), 473-485.

Olgun, A. & Türkmen, E. (2020) On a Class of Perfect Rings, *Honam Mathematical Journal*, **42(3)**, 591-600.

Talebi, Y., Hamzekolaee A. R. M. & Tercan, A. (2014). Goldie-Rad-Supplemented Modules. *An. Şt.Univ. Ovidius Constanta* **22(3)**, 205-218.

Wisbauer, R. (1991). Foundations of Module and Ring Theory. Gordon and Breach, Philadelphia 600.Zhou, D.X. & Zhang, X.R. (2011). Small-Essential Submodules and Morita Duality, SoutheastAsian Bulletin of Mathematics, 35, 1051-1062.