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ABSTRACT 
In this study, some features of the Goldie ss-lifting modules concept and generalizations of this 
module class are given with the help of the relation 𝛽##∗  defined in the article (Gömleksiz & Nişancı 
Türkmen, 2023). In this relation 𝑋𝛽##∗ 𝑌, which is defined as submodules 𝑋 and 𝑌 of the module	𝐻 
provided that $%&

$
⊆ '()!(+)%$

$
  and   $%&

&
⊆ '()!(+)%&

&
   is determined by conditions. The important 

properties of this relation in Goldie-ss-lifting modules have been studied. In this article, Goldie-ss-
supplemented modules are considered as a special case of Goldie*-supplemented modules and 
Goldie-ss-lifting modules are considered as a special case of Goldie*-lifting modules, and the basic 
module structure theorems are included with the help of the relation  𝛽##∗ , which is more special than 
the relation 𝛽∗. The classification of the ss-semi-local modules was made using the relation 𝛽##∗ . It 
has been proved that the factor modules of Goldie-ss-supplemented modules are also Goldie-ss-
supplemented modules. It has been shown that 𝑆-!!∗ (𝐻), which is the set of equivalence classes 
according to the relation 𝛽##∗  for submodules of a module 	𝐻, has a monoid structure. With the help 
of fully invariant submodules, it has been shown that every direct summand of a Goldie-ss-
supplemented module is a Goldie-ss-supplemented module. In addition, ss-supplemented modules 
and Goldie-ss-supplemented modules classes, and ss-lifting modules and Goldie-ss-lifting modules 
classes were compared. 

Keywords: The Relation 	𝛽##∗ , Goldie-ss-Lifting Module, Goldie-ss-Supplemented Module 
 

ÖZET  
Bu çalışmada, Goldie ss-yükseltilebilir modüller kavramının birtakım özellikleri ve bu modül 
sınıfının genellemeleri	 (Gömleksiz ve Nişancı Türkmen, 2023) adlı makalede 
tanımlanan			𝛽##∗ 	bağıntısı yardımıyla verilmiştir. Bu bağıntıda	 𝑋𝛽##∗ 𝑌 olarak tanımlanan 𝐻 
modülünün 𝑋 ve 𝑌 alt modülleri için  $%&

$
⊆ ./#!(+)%$

$
  ve  $%&

&
⊆ ./#!(+)%&

&
  koşulları ile belirlenmiştir. 

Bu bağıntının Goldie-ss-yükseltilebilir modüllerdeki önemli özellikleri incelenmiştir. Bu makalede, 
Goldie-ss-tümlenmiş modüller Goldie*-tümlenmiş modüllerin bir özel hali ve Goldie-ss-
yükseltilebilir modülleri de Goldie*-yükseltilebilir modüllerin bir özel hali olarak ele alınarak 𝛽∗ 
bağıntısından daha özel olan 𝛽##∗  bağıntısı yardımıyla temel modül yapı teoremlerine yer verilmiştir. 
Ss-yarıyerel modüllerin	𝛽##∗  bağıntısı kullanılarak sınıflandırılması yapılmıştır. Goldie-ss-tümlenmiş 
modüllerin bölüm modüllerinin de Goldie-ss-tümlenmiş modüller olduğu ispatlanmıştır. Bir 𝐻 
modülünün alt modülleri için	𝛽##∗  bağıntısına göre denklik sınıflarının kümesi olan 𝑆-!!∗ (𝐻) ının bir 
monoid yapısına sahip olduğu gösterilmiştir. Karakteristik alt modüller yardımıyla Goldie-ss-
tümlenmiş bir modülün her direkt toplam teriminin Goldie-ss-tümlenmiş modül olduğu gösterilmiştir. 
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Ayrıca ss-tümlenmiş modüller ile Goldie-ss-tümlenmiş modüllerin sınıfları, ve ss-yükseltilebilir 
modüller ile Goldie-ss-yükseltilebilir modüllerin sınıfları mukayese edilmiştir.  

Anahtar kelimeler: 𝛽##∗ 	bağıntısı, Goldie-ss-Yükseltilebilir Modül, Goldie-ss-Tümlenmiş Modül 
 

1. INTRODUCTION  

In this work, 𝑅 denotes as an associative ring with unit element 10, and the modules situated unitary 
left 𝑅-modules. For a module 𝐻, we use 𝑁 ≤ 𝐻  to denote 𝑁 is a submodule of 𝐻. 𝑅𝑎𝑑(𝐻) will denote 
the Jacobson radical of 𝐻. A submodule 𝐾 ⊆ 𝐻 is said to be small in 𝐻 (denoted by the 𝐾 ≪ 𝐻) if 
𝑁 + 𝐾 ≠ 𝐻  for any proper submodule 𝑁 of 𝐻.  Lifting modules and variations were studied by many 
authors (see (Clark et. al., 2006), (Eryılmaz, 2021).  Following (Clark et. al., 2006, we call a module 
𝐻 lifting if for each 𝑁 ⊆ 𝐻 there is a direct summand 𝐾 of 𝐻 so that 𝐾 ⊆ 𝑁 and 𝑁/𝐾 ≪ 𝐻/𝐾. A 
module 𝑀 is said to be supplemented if for each 𝑁 ⊆ 𝐻, there is  𝐾 ⊆ 𝐻 so that  𝐻 = 𝑁 + 𝐾 and 
𝑁 ∩ 𝐾 ≪ 𝐾 (in this stage 𝐾 is a supplement of 𝑁 in  𝐻). 𝐴 module 𝐻 is said to be semilocal  if for 
every submodule 𝑁 of  𝐻, there is a 𝐿 ⊆ 𝐻 such that 𝑁 + 𝐿 is equal to 𝐻 and 𝑁 ∩ 𝐿 ≪ 𝐻. According 
to (Eryılmaz, 2020), a module 𝐻 is said to be ss-lifting if for each 𝑁 ⊆ 𝐻 there is a direct summand 
𝐾 of 𝐻 such that 𝐾 ⊆ 𝑁 and 𝑁/𝐾 ⊆ 𝑆𝑜𝑐#(𝐻/𝐾), where 𝑆𝑜𝑐#(𝑋) is the sum of all simple submodules 
which are small in a module 𝑋. 𝐴 module 𝐻 is said to be ss-supplemented if its submodules have an 
ss-supplement in 𝐻. Let 𝐾, 𝐿 ≤ 𝐻. 𝐾 is said to be a (weak) ss-supplement of 𝐿 in  𝐻 provided that 
𝑁 + 𝐾=𝐻  and  𝑁 ∩ 𝐾 ⊆ 𝑆𝑜𝑐#(𝐻) (Kaynar et.al., 2020). 𝐴 module 𝐻 is said to be ss-semilocal if its 
submodules have a weak ss-supplement in 𝐻 (Olgun & Türkmen, 2020).  

By 𝑆(𝐻) we denote the set of all submodules of a module 𝐻. Then  𝑋, 𝑌 ∈ 𝑆(𝐻) over the set 𝑆(𝐻) 
relation 𝛽∗ is defined as follows. "𝑋𝛽∗𝑌	 ⇔ (𝑋 + 𝑌)/𝑌 ≪ 𝐻/𝑌)  and  (𝑋 + 𝑌)/𝑋	 ≪ 𝐻/𝑋".  Let 𝐻 
be a module. If for each submodule  𝑋 ⊆ 𝐻  𝑋𝛽∗𝑌 thus, if a direct summand  𝐷 of 𝐻 can be found, 
then the module  𝐻, Goldie*-lifting. Let 𝐻 be a module. If for each  𝑋 ⊆ 𝐻  submodule there will be 
a supplement 𝑆 of 𝑋	such that  𝑋𝛽∗𝑆, then 𝐻 is said to be Goldie*-supplemented.  
In (Gömleksiz & Nişancı Türkmen, 2023), it is defined Goldie-ss-supplemented and Goldie-ss-lifting 
modules based on the definition of the relation 𝛽##∗ . Let X, Y ⊆ H be modules. It is said to be X and Y 
are equivalent by the relation 𝛽##∗ , 𝑋𝛽##∗ 𝑌 providing the conditions the   $%&

$
⊆ '()!(+)%$

$
   and   $%&

&
⊆

'()!(+)%&
&

   for 𝑋 and 𝑌 submodules taken in the set of submodules of 𝐻. A module 𝐻 is said to be 
Goldie-ss-supplemented if for each ⊆ 𝐻, there is a submodule 𝑆 of 𝐻 with 𝑁𝛽##∗ 𝑆, where 𝑆 is an ss-
supplement in 𝐻. A module 𝐻 is called Goldie-ss-lifting (resp., (𝑃##∗ ))  if for any 𝑁 ⊆ 𝐻, there exists 
an ss-supplement submodule (a direct summand) 𝐷 of 𝐻 so that 𝑁𝛽##∗ 𝐷		(𝑟𝑒𝑠𝑝.,

1
.
⊆ 𝑆𝑜𝑐# H

+
.
I, 𝐷 ≤

𝑁). Clearly every (𝑃##∗ )-module is Goldie-ss-lifting and every Goldie-ss-lifting module is Goldie-ss-
supplemented.  
 

2. MATERIALS AND METHODS 
 
In this section, the main features of the relation 𝛽##∗  that we will give in the main part of our study will 
be given by quoting from the reference (Gömleksiz & Nişancı Türkmen, 2023). 

Theorem 2.1. Let 𝐻 be a module and 𝑋, 𝑌 ⊆ 𝐻. In this case, the following expressions are equivalent. 

(1) 𝑋𝛽##∗ 𝑌, 
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(2) There are equations 𝑋 + 𝐴 = 𝐻 and 𝑌 + 𝐴 = 𝐻 for each submodule of the module 𝐻   satisfying 
the condition 𝑋 + 𝑌 + 𝐴, 

(3) Let 𝑋 and 𝑌 be semisimple submodules of 𝐻 be given, 𝑌	 + 	𝐾	 = 	𝐻	 for every 𝐾 ⊆ 𝐻 satisfying 
the conditions the sum 𝑋 + 𝐾 is 𝐻. Also the sum 𝑋	 + 𝑍	 is 𝐻 for every  𝑍 ⊆ 𝐻 satisfying the 
condition 𝑌	 + 	𝑍	 = 	𝐻.  

Proof. (1) ⇒ (2) Let  𝑋𝛽##∗ 𝑌. Let's take any submodule 𝐴 of 𝐻 with 𝑋 + 𝑌 + 𝐴 = 𝐻. It follows from  
𝑋 + 𝑌 + 𝐴 = 𝐻 that (𝑋 + 𝑌)/𝑌 + (𝐴 + 𝑌)/𝑌	is 𝐻/𝑌. By the hypothesis, (𝑋 + 𝑌)/𝑌 ⊆ 𝑆𝑜𝑐#(𝐻/𝑌). 
So we get  𝑌 + 𝐴 = 𝐻 is found. Similarly, it can be shown that 𝑋 + 𝐴 = 𝐻. 

(2)⇒(3) Let’s take any submodule 𝐾 ⊆	𝐻	satisfying the condition 𝑋	 + 	𝐾	 = 	𝐻. Then 𝑋	 + 	𝐾	 +
𝑌	 = 	𝐻	can be written and 𝑌	 + 	𝐾	 = 	𝐻	is found from the hypothesis. Similarly let’s take any 
submodule 𝐿 ⊆ 𝐻 that satisfies the condition 𝑌	 + 	𝐿	 = 	𝐻	. Here 𝑋	 + 	𝐿	 + 𝑌	 = 	𝐻	can be written 
and again  𝑋	 + 	𝐿	 = 	𝐻	 is found from the hypothesis. 

(3)	⇒(2) Let’s take any submodule 𝐴 of 𝐻 that satisfies the condition  𝑋	 + 𝑌	 + 	𝐴	 = 	𝐻. If  𝑋	 +
	(𝑌	 + 	𝐴) 	= 	𝐻	is taken as (3) 𝑌	 +	(𝑌	 + 	𝐴) 	= 	𝐻 can be written. From here, the result is 𝑌	 +
	𝐴	 = 	𝐻. If the roles of  𝑋  and  𝑌 are changed in the steps, it can be shown that 𝑋	 + 	𝐴	 = 	𝐻 
similarly. 

(3)	⇒ (1) It follows from (𝑋 + 𝑌)/𝑌 ⊆ 𝑆𝑜𝑐#(𝐻/𝑌) and (𝑋 + 𝑌)/𝑋 ⊆ 𝑆𝑜𝑐#(𝐻/𝑋) that 
(	𝑋	 + 𝑌	)/𝑌	 ≪ 	𝐻	/𝑌 and (	𝑋	 + 𝑌	)/𝑋 ≪ 𝐻	/𝑋. Since submodules 𝑋 and 𝑌 are semisimple, factor 
modules (𝑋 + 𝑌)/𝑌,  (𝑋 + 𝑌)/𝑋  are semisimple by 8.1.5. Corollary 2 in (Kasch, 1982). Let’s take 
the submodule  𝐵/𝑌 ⊆ 𝐻/𝑌 with	(𝑋 + 𝑌)/𝑌 + 𝐵/𝑌 = 𝐻/𝑌 . In this case 𝑋 + 𝑌 + 𝐵 = 𝐻 and since  
𝑌 ⊆	𝐵,	  we have the sum  𝑋 + 𝐵 is 𝐻. From hypothesis, the sum 𝑌	 + 	𝐵 is 𝐻. As 𝑌 ⊆	𝐵, we obtain 
that 𝐵	 = 	𝐻. Thus, the result  (	X	 + Y	)/Y	 ≪ 	H	/Y is reached. It can also be shown to be 
(	𝑋	 + 𝑌	)/𝑋 ≪ 	𝐻	/𝑋 with similar operations. Thus (𝑋 + 𝑌)/𝑌 ⊆ 𝑆𝑜𝑐#(𝐻/𝑌) and  (𝑋 + 𝑌)/𝑋 ⊆ 
𝑆𝑜𝑐#(𝐻/𝑋) are obtained. 
 

Example 2.2. (𝑖) Two modules isomorphic to each other in any 𝑆-module 𝛽##∗  may not be equivalent 
according to the relation. For example,  𝑆 = QR𝑎 𝑏

0 𝑐U V	𝑎, 𝑏, 𝑐 ∈ 𝐹X, where 𝐹 is field. Let's take 𝑆' . 

Then submodules  𝑋 = R0 𝐹
0 0U   and   𝑌 = R0 0

0 𝐹U are isomorphic. But they are not equivalent 
according to the relation 𝛽##∗ . 

(𝑖𝑖) Given ℤ × ℤ.ℤ 	 Therefore ℤ × {0}  and  {0} × ℤ   are also isomorphic to each other.  On the other 
hand, they are not equivalent according to the relation 𝛽##∗ . 

 

Corollary 2.3. The set of small semisimple submodules in a module 𝐻 form a unique equivalence 
class according to the relation 𝛽##∗ . 
 

Theorem 2.4. Let  𝑋, 𝑌 ⊆	𝐻	 be modules. If  𝑋𝛽##∗ 𝑌, then submodules 𝑋  and 𝑌 of 𝐻 are ss-supplement 
of each other. 

Proof. Suppose the submodule 𝑈 ⊆	𝐻 is an ss-supplement of 𝑋. Since 	𝑋𝛽##∗ 𝑌,  then 𝑌 + 𝑈 = 𝐻 
according to Theorem 2.1. It can be shown that the submodule 𝑈 ⊆	𝐻 is an bir ss-supplement of 𝑌, 
let’s take a submodule 𝑉 ⊆	𝑈 with 𝑌 + 𝑉 = 𝐻. In this case, since 𝑋𝛽##∗ ,  then 𝑋 + 𝑉 = 𝐻 according 
to Theorem 2.1. From here, since the submodule 𝑈 is an ss-supplement of 𝑋 and 𝑉 ⊆	𝑈, then we have 
	𝑋 ∩ 𝑈 is semisimple by 8.1.5.Corollary 1 in (Kasch, 1982). It follows that 𝑋 ∩ 𝑉 is semisimple. 
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Therefore the submodule 𝑈 is also an ss-supplement of 𝑌. Also since the relation 𝛽##∗  is symmetric, 
similarly the ss-supplemented of  𝑌 is also the ss-supplemented of 𝑋. 

 

 Theorem 2.5. Let 𝑋 and  𝑌 be semisimple submodules of a module 𝐻		with  𝐽 ⊆ 𝑆𝑜𝑐#(𝐻). Then  
𝑋𝛽##∗ 𝑌 ⇔ 𝑋𝛽##∗ (𝑌 + 𝐽). 
Proof. (⇒) : Let’s assume that 𝑋𝛽##∗ 𝑌. Let’s take any submodule 𝐾 ⊆	 𝑀 satisfying 𝐻 = 𝑋 +
(𝑌 + 𝐽) + 𝐾. Since 	𝐻 = 𝑋 + (𝑌 + 𝐽) + 𝐾  and  𝐽 ⊆ 𝑆𝑜𝑐#(𝐻), the equality 𝐻 = 𝑋 + 𝑌 + 𝐾 is 
obtained. Consider that  𝐻 = 𝑋 + 𝑌 + 𝐾 and 𝑋𝛽##∗ 𝑌  are obtained Theorem 2.1. 𝐻 = 𝑋 + 𝐾 and  𝐻 =
𝑌 + 𝐾 are obtained. From here, the result of 𝐻 = 𝑋 + 𝐾 and 𝐻 = (𝑌 + 𝐽) + 𝐾 is reached. Again, 
according to Theorem 2.1., 𝑋𝛽##∗ (𝑌 + 𝐽) is found. 

(⇐) : Let’s assume that 𝑋𝛽##∗ (𝑌 + 𝐽). Let’s take any submodule	𝐾 ⊆	𝐻 satisfying  𝐻 = 𝑋 + 𝑌 + 𝐾. 
In this case  𝐻 = 𝑋 + (𝑌 + 𝐽) + 𝐾 can be written. Also, since 𝑋𝛽##∗ (𝑌 + 𝐽)  according to Theorem 
2.1.  𝐻 = 𝑋 + 𝐾 and  𝐻 = (𝑌 + 𝐽) + 𝐾 are found. By acception 𝐽 ⊆ 𝑆𝑜𝑐#(𝐻), the result is  𝐻 = 𝑌 +
𝐾 . Then 𝑋𝛽##∗ 𝑌  is obtained according to Theorem 2.1.  

 

Theorem 2.6. Let 𝐻 be a module with 𝑆𝑜𝑐#(𝐻) = {0} . If there is a decomposition  𝐻 = 𝐻3⨁𝐻4 for 
the submodule 𝐻3 of 𝐻 and the semisimple submodule 𝐻4 of 𝐻, then  𝑋 ⊆	𝐻 and 𝑋𝛽##∗ 𝐻3 with 𝐻 =
𝐻4⨁𝑋. 

Proof. Let’s assume is 𝑋𝛽##∗ 𝐻3. From the equation 𝐻 = 𝐻3⨁𝐻4, the submodule 𝐻4 is an ss-
supplement of 𝐻3. Since 𝑋𝛽##∗ 𝐻3, the semisimple submodule 𝐻4 is also an ss-supplement of  𝑋 
according to Theorem 2.4. So  𝐻 = 𝐻4 + 𝑋 and 𝐻4 ∩ 𝑋 ≪ 𝑀4 can be written. Since 𝐻4 semisimple, 
so is 𝐻4 ∩ 𝑋. Hence is  𝐻4 ∩ 𝑋 ⊆ 𝑆𝑜𝑐#(𝐻). By the hypothesis 𝑆𝑜𝑐#(𝐻) = {0},   𝐻4 ∩ 𝑋 ⊆ 𝑆𝑜𝑐#(𝐻) 
={0}  with 𝐻 = 𝐻4⨁𝑋. 

 

Theorem 2.7. Let 𝑆 be a semisimple submodule of an 𝑅-module	𝐻 and let  𝐼  be an ideal of 𝑅. Then 
𝐼𝑆𝛽##∗ 𝐼5S	 for every 𝑛 ∈ ℤ%. In addition, for every 𝑛 ∈ ℤ%,  it satisfied that  𝐼𝛽##∗ 𝐼5. 

Proof. Let’s apply the proof by induction on n so that  𝑛 = 1. Then  𝐼𝑆𝛽##∗ 𝐼𝑆  is provided since  𝛽##∗  is 
the reflexive relation. Let us now assume that the claim is true for  𝑛 > 1. Suppose we take 𝐵 ⊆ 𝐻 
such that  𝐼𝑆/𝐼5𝑆 + 𝐵/𝐼5𝑆	 = 𝐻/𝐼5𝑆. In this case 𝐼𝑆 + 𝐵 = 𝐻. From here, there are the equations 
𝐼4𝑆 + 𝐼𝐵 = 𝐼𝐻,… , 𝐼5𝑆 + 𝐼563𝐵 = 𝐼563𝐻. Using these equations, 𝐻 = 𝐼𝑆 + 𝐵 ⊆ 𝐼𝐻 + 𝐵 = 𝐼4𝑆 +
𝐼𝐵 + 𝐵 ⊆ 𝐼4𝐻 + 𝐼𝐵 + 𝐵 = 𝐼7𝑆 + 𝐼4𝐵 + 𝐼𝐵 + 𝐵 ⊆ ⋯ ⊆ 𝐼5𝑆 + 𝐼563𝐵 +⋯+ 𝐼𝐵 + 𝐵 ⊆ 𝐼5𝑆 + 𝐵 ⊆
𝐻. Thus 𝐵/𝐼5𝑆 = 𝐻/𝐼5𝑆. Then we have (𝐼𝑆 + 𝐼5𝑆)/𝐼5𝑆 ≪ 𝐻/𝐼5S and (𝐼𝑆 + 𝐼5𝑆)/𝐼𝑆 = h0+/9'i 	≪
𝐻/𝐼𝑆. Also (𝐼𝑆 + 𝐼5𝑆)/𝐼5𝑆 is semisimple, since 	𝑆 is semisimple according to the (Kasch, 1982) in 
Corollary 3.  So since  𝐼𝑆 + 𝐼5𝑆/𝐼𝑆 ⊆ 𝑆𝑜𝑐#(𝐻/𝐼𝑆) and 𝐼𝑆 + 𝐼5𝑆/𝐼5𝑆 ⊆ 𝑆𝑜𝑐#(𝐻/𝐼5𝑆) is 𝐼𝑆𝛽##∗ 𝐼5𝑆. 

 
3. RESULTS AND DISCUSSION 

Proposition 3.1. Given a ss-semilocal module 𝐻. Then its semisimple submodule are equivalent to 
an ss-semilocal submodules of 𝐻 by the relation 𝛽##∗ . 

Proof. Let 𝐻 be an ss-semilocal module. Let’s take any semisimple submodule 𝑋 of 𝐻. Since 𝐻 is ss-
semilocal, there is a submodule 𝑍 ⊆	𝐻	so that  𝑋 + 𝑍 = ℎ and 𝑋 ∩ 𝑍 ⊆ 𝑆𝑜𝑐#(𝐻). Here 𝑋 is also a 
weak ss-supplement of 𝑍. Also 𝑋𝛽##∗ 𝑋 can be written since the relation	𝛽##∗  has reflexive property. As 
a result, every semisimple submodule of ℎ is equivalent to an ss-semilocal submodule of 	𝐻 . 
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Lemma 3.2. (See (Gömleksiz & Nişancı Türkmen, 2023)) Let 	𝑋3, 𝑋4, 𝑌3, 𝑌4 ⊆	ℎ, such that 𝑋3𝛽##∗ 𝑌3 
and 𝑋4𝛽##∗ 𝑌4. Then (𝑋3 + 𝑋4)𝛽##∗ (𝑌3 + 𝑌4) and  (𝑋3 + 𝑌4)𝛽##∗ (𝑌3 + 𝑋4) . 
Proof. Suppose that  𝑋3𝛽##∗ 𝑌3 and  𝑋4𝛽##∗ 𝑌4. Then 𝑋3 + 𝑌3 ⊆ 𝑆𝑜𝑐#(𝐻) + 𝑋3 ,   𝑋3 + 𝑌3 ⊆ 𝑆𝑜𝑐#(𝐻) +
𝑌3, 𝑋4 + 𝑌4 ⊆ 𝑆𝑜𝑐#(𝐻) + 𝑋4   and   𝑋4 + 𝑌4 ⊆ 𝑆𝑜𝑐#(𝐻) + 𝑌4. Hence by using above inclusions, we 
can easily see that 	(𝑋3 + 𝑋4)𝛽##∗ (𝑌3 + 𝑌4) and (𝑋3 + 𝑌4)𝛽##∗ (𝑌3 + 𝑋4). 
Corollary 3.3. Let 𝐻 be a module. If a least one small semisimple submodule	𝐿 of 𝐻 which satisfies 
the equations 𝑋 + 𝐿 = 𝑍 + 𝐿 = 𝑋 + 𝑍 for every ss-semilocal semisimple submodule 𝑋  of 𝐻 and a 
ss-semilocal 𝑍 of  𝐻, then  𝑋𝛽##∗ (𝑋 + 𝑍)	and	𝑍𝛽##∗ (𝑍 + 𝑋). 

Proof. Let’s assume that module 𝐻 is ss-semilocal. By Proposition 3.1, a module 𝐻 has a weak ss-
supplement 𝑍 so that ∀	𝑋 ⊆	𝐻 is 𝑋𝛽##∗ 𝑍 for the semisimple submodule. In this case, a submodule 
𝑊 ⊆	𝐻 can be found such that  𝑍 +𝑊 = 𝐻 and 𝑍 ∩𝑊 ⊆ 𝑆𝑜𝑐#(𝐻). According to Lemma 3.2, we 
have  𝑋𝛽##∗ (𝑋 + 𝑍)	and 	𝑍𝛽##∗ (𝑍 + 𝑋). 
 
Remark 3.4. In Lemma 3.2, the finite sum is extensible, but infinite sum cannot be extended. For 
example, let’s take  𝑅 = ℤ  and 𝐻 = ℚ . We know that 𝑆𝑜𝑐#(ℚ) = ℚ = ∑ ℤ 3

::∈ℤ#  . Here ℤ 3
:
𝛽##∗ {0}, 

since ℤ 3
:
⊆ 𝑆𝑜𝑐#(ℚ) for every 𝑚 ∈ ℤ%. If Lemma 3.2 was satisfied in countable sums, then  ℚ =

∑ ℤ 3
::∈ℤ# 𝛽##∗ {0} . This would introduce the contradiction  ℚ ⊆ 𝑆𝑜𝑐#(ℚ). 

 

Definition 3.5. Let 𝐻 be a module. According to the relation 𝛽##∗ , the submodule of 	𝐻 let’s denote 
the set of equivalence classes with 𝑆-!!∗ (𝐻). That is  𝑆-!!∗ (𝐻) = h𝑋p-!!∗ q𝑋 ⊆ 𝐻i  where is 𝑋p-!!∗ =
{𝑌|𝑋𝛽##∗ 𝑌}. 
 

Theorem 3.6. 𝑆-!!∗ (𝐻) has a monoid structure. 

Proof. It is clear that a binary operation +: 𝑆-!!∗ (𝐻) × 𝑆-!!∗ (𝐻) → 𝑆-!!∗ (𝐻) is defined by (𝑋p-!!∗ ,	𝑌p-!!∗ ) ∈
𝑆-!!∗ (𝐻) × 𝑆-!!∗ (𝐻) with  𝑋p-!!∗ + 𝑌p-!!∗ = (𝑋 + 𝑌pppppppp)-!!∗  . Then + has the associative property. So  0p-!!∗ ∈
𝑆-!!∗ (𝐻) is the unitary element according to this operation. So 𝑆-!!∗ (𝐻)	 has a monoid structure. 

 

Lemma 3.7. Given the decomposition of modules 𝐾 = 𝐴⨁𝐵. For  𝑋, 𝑆 ⊆ 𝐴, if  𝑆𝛽##∗ 𝑋 in  𝐾, then   
𝑆𝛽##∗ 𝑋  in 		𝐴. 

Proof. Let’s take a submodule 𝐿 ⊆	𝐴 so that 𝑋 + 𝐿 = 𝐴. In this case, (𝑋 + 𝐿)⨁𝐵 = 𝐾. From here 
𝑋 + (𝐿⨁𝐵) = 𝐾 can be written. According to Theorem 2.1 (1 ⇔ 3), since 𝑆𝛽##∗ 𝑋 in 𝐾, it can be 
written 𝑆 + (𝐿⨁𝐵) = 𝐾. Therefore, there exists the decomposition (𝑆 + 𝐿)⨁𝐵 = 𝐾. And since 𝐾 =
𝐴⨁𝐵 , 𝑆 + 𝐿 = 𝐴 is found. Similarly, according to Theorem 2.1 (1 ⇔ 3), since  𝑋 +𝑊 = 𝐴  will 
be in every submodule  𝑊 ⊆	𝐴	satisfying the equation 𝑆 +𝑊 = 𝐴. Then we have 𝑆𝛽##∗ 𝑋 in 𝐴. 

It follows from (Wisbauer, 1991) that a submodule 𝑊of 𝐻 is said to be fully invariant if 𝑔	(𝑊) ⊆
𝑊for each 𝑔 ∈ 𝐸𝑛𝑑(𝐻). Elements 𝑒3, 𝑒4 of a ring 𝑅	is said to be orthogonal idempotent if 𝑒34 =
00 , 𝑒44 = 00 	and 𝑒3𝑒4 = 10. 
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Theorem 3.8. Let 𝐴 = 𝑎𝐻, 𝐵 = 𝑏𝐻 and 𝐻 = 𝐴⨁𝐵, where 𝐻 is a module and the set {𝑎, 𝑏} is a 
collection of orthogonal idempotents of 𝐸𝑛𝑑(𝐻). Also, each submodule 𝑋 ⊆	𝐻	can be written as  𝑋 =
𝑎𝑋 + 𝑏𝑋  (especially, 𝑋 is fully invariant). In this case, module 𝐻 is Goldie-ss-supplemented iff 
modules 𝐴 and 𝐵 are Goldie-ss-supplemented. 

Proof. (⇒) Let 𝐻 module be Goldie-ss-supplemented. Let’s first take an arbitrary submodule  𝑋 ⊆	
𝐻. Since the module 	𝐻 is Goldie-ss-supplemented, there is an ss-supplemented submodule  𝑆 in 𝐻 
such that 𝑋𝛽##∗ 𝑆. So there is a	𝐿 ⊆	H	so that 𝐻 = 𝑆 + 𝐿, 𝑆 ∩ 𝐿 ⊆ 𝑆𝑜𝑐# (𝐿). Since 𝐻 = 𝑆 + 𝐿 and 
𝑋𝛽##∗ 𝑆, then it is obvious that 𝑀 is 𝑋 + 𝐿. Since  𝐿 = 𝑎𝐿 + 𝑏𝐿, it follows the hypothesis that 𝑋 +
𝑎𝐿 + 𝑏𝐿 is 𝐻. Since it is known that  𝑋 + 𝑎𝐿 ⊆ 𝐴 and  𝑏𝐿 ≤ 𝐵, the equations  𝐻 = 𝑋 + 𝑎𝐿 + 𝐵 and 
𝐻 = 𝐴 + 𝑏𝐿 can be written. Also, since 𝐻 = 𝐴⨁𝐵,	then 𝐴 = 𝑋 + 𝑎𝐿 and  𝐵 = 𝑏𝐿 are found. Again, 
since 𝐵 = 𝑏𝐻, 𝑏𝑆 ⊆ 𝑏𝐻 = 𝑏𝐿 ⊆ 𝐿 by the hypothesis. From here, 𝐻 = 𝑆 + 𝐿 = 𝑎𝑆 + 𝑏𝑆 + 𝐿 = 𝑎𝑆 +
𝐿. Since 𝑎𝑆 ⊆ 𝑆 and 𝑆 is a supplement of 𝐿 in 𝐻, we deduce that 𝑎𝑆 is 𝑆. Therefore, in the module	𝐻, 
𝑋𝛽##∗ 𝑎𝑆.  𝑎𝑆 ⊆ 𝐴, 𝑋𝛽##∗ 𝑎𝑆  is satisfied in module 𝐴 due to Lemma 3.7. On the other hand, it is clear 
that 𝐴 = 𝑎𝑆 + 𝑎𝐿. Here (𝑎𝑆 ∩ 𝑎𝐿) ≪ 𝑆 = 𝑎𝑆 by (Wisbauer, 1991).  By (Kasch, 1982) in 8.1.5, a 
submodule 𝑎𝑆 ∩ 𝑎𝐿 is also semisimple. A semisimple submodule 𝑎𝑆 of 𝐴 is also an ss-supplemented. 
Thus, 𝐴 Goldie-ss-supplemented. Similarly, it can be shown that  𝐵 is Goldie-ss-supplemented. 

(⇐): It is shown that an arbitrary submodule 𝑈 of the module 𝐻, with submodules 𝐴 and 	𝐵  being 
Goldie-ss-supplemented. Let’s assume that  𝑈3 = 𝑎𝑈 and  𝑈4 = 𝑏𝑈. Since 𝑈3 ⊆ 𝐴 and 𝐴 are Goldie-
ss-supplemented,	𝐴 has a ss-supplement submodule 𝑆3  with 𝑈3𝛽##∗ 𝑆3. Then according to Theorem 
2.1(1⇔3) there is submodule 𝐿3 such that 𝐿3 ∩ 𝑆3is semisimple such that  𝐿3 + 𝑆3 = 𝐴   and   𝐿3 ∩
𝑆3 ≪ 𝑆3. Since 𝐵 has a ss-supplement submodule 𝑆4 so that 𝑈4𝛽##∗ 𝑆4	 and  𝐿4 ⊆ 𝐵		the submodule 
𝐿4 + 𝑆4 = 𝐵  and  𝐿4 ∩ 𝑆4 ≪ 𝑆4 and 𝐿4 ∩ 𝑆4 semisimple. According to (Gömleksiz & Nişancı 
Türkmen, 2023) in Proposition 2.6, 𝑈 = (𝑈3 + 𝑈4)𝛽##∗ (𝑆3 + 𝑆4) can be written. Moreover, it can be 
shown that 𝐻 = 𝑆3 + 𝑆4 + 𝐿3 + 𝑆4 and (𝑆3 + 𝑆4) ∩ (𝐿3 + 𝐿4 is equal to 	(𝑆3 ∩ 𝐿3) + (𝑆4 ∩ 𝐿4). 
Also, since 𝐿3 ∩ 𝑆3 is small in 𝑆3 and 𝐿4 ∩ 𝑆4 is small in 𝑆4.  Then we have (𝑆3 + 𝑆4) ∩ (𝐿3 + 𝐿4) =
	(𝑆3 ∩ 𝐿3) + (𝑆4 ∩ 𝐿4) ≪ (𝑆3 + 𝑆4) by (Wisbauer, 1991). Since 𝑆3 ∩ 𝐿3  and 𝑆4 ∩ 𝐿4 are semisimple 
submodules, the submodule (𝑆3 + 𝑆4) ∩ (𝐿3 + 𝐿4) is also a semisimple submodule of  𝑆3 + 𝑆4 by 
(Kasch, 1982). So 𝑆3 + 𝑆4 is an ss-supplement of  𝐿3 + 𝐿4 in  𝐻 as a result, 𝐻  is  Goldie-ss-
supplemented. 
 

Theorem 3.9. Let 𝐻 be a Goldie-ss-supplemented module and 𝑋 ⊆	𝐻. Then 𝐻/𝑋 is Goldie-ss-
supplemented. 

Proof. Let’s take an arbitrary submodule 𝑁/𝑋 ⊆ 𝐻/𝑋 with 𝑋 ⊆ 𝑁 ⊆ 𝐻. Since 𝑁 ⊆ 𝐻 and 𝐻 are 
Goldie-ss-supplemented,	𝐻 has an ss-supplement submodule 𝑆 with 𝑁𝛽##∗ 𝑆. Let’s take any submodule 
𝐿/𝑋 ⊆ 𝐻/𝑋 that satisfies the sum 𝑁/𝑋 + 𝐿/𝑋 is 𝐻/𝑋. In this case, there is the equality 𝑁 + 𝐿 =
𝐻	and since 𝑁𝛽##∗ 𝑆, then  𝑆 + 𝐿 is equal to 𝐻 according to Theorem 2.1(1⇒ 3). From here, the result 
(𝑆 + 𝑋)/𝑋 + 𝐿/𝑋 = 𝐻/𝑋 is reached. Similarly, the equality 𝑁/𝑋 + 𝐿/𝑋 = 𝐻/𝑋 is provided for each 
submodule 𝐿/𝑋 ⊆ 𝐻/𝑋 providing the sum (𝑆 + 𝑋)/𝑋 + 𝐿/𝑋 is 𝐻/𝑋. It follows from (Gömleksiz & 
Nişancı Türkmen, 2023) in Proposition 3.1 that 𝑁/𝑋𝛽##∗ (𝑆 + 𝑋)/𝑋. Thus, (𝑆 + 𝑋)/𝑋  is also an ss-
supplement submodule 𝑁/𝑋 in the factor module 𝐻/𝑋. Hence, the 𝐻/𝑋 is Goldie-ss-supplemented. 

 

Lemma 3.10. Let 𝐻 be a module and  𝐿 ⊆ 𝑈 ⊆ 𝐻. If the semisimple submodule 𝑈  of 𝐻 lifts onto 
the semisimple submodule 𝐿, then 𝑈𝛽##∗ 𝐿 . 

Proof. If 𝑈 lifts onto the submodule 𝐿 in 𝑀, for every  𝑁 ⊆ 𝐻 that satisfies the equation  𝑈 + 𝑁 is 
equal to 𝐻. Then the sum 𝐿 + 𝑁 is H by (Clark et al., 2006). In addition, since 𝐿 ⊆ 𝑈, it is obvious 
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that the sum  𝑈 + 𝑁 is 𝐻 for every 𝐾 ⊆ 𝐻  which satisfies the sum 𝐿 + 𝐾 is 𝐻. Hence by Theorem 
2.1. 𝑈𝛽##∗ 𝐿  is obtained accordingly. 

 

Corollary 3.11. Let 𝐻 be an ss-lifting module. Then 	𝐻 is Goldie-ss-lifting. 

Proof. Let 𝐻 be ss-lifting. By the definition, there is a decomposition for every submodule 𝐴 of 𝐻 
with 𝐻 = 𝐻3⨁𝐻4 such that 𝐻3 ⊆	 𝐴	and 𝐴 ∩ 𝐻4 ⊆ 𝑆𝑜𝑐#(𝐻), from which  𝑆𝑜𝑐#(𝐻) = 𝑆𝑜𝑐(𝐻) ∩
𝑅𝑎𝑑(𝐻). Since 𝐻 is ss-lifting each submodule can be lifting on a direct summand. Therefore, each 
submodule of the module 𝐻 is equivalent to a direct summand in accordance with Lemma 3.10. So 
the module 𝐻 is Goldie-ss-lifting. 

 

Theorem 3.12. Let 𝐻 be an Goldie-ss-lifting module and 𝑋 be a submodule of  𝐻.Then the factor 
module  +

$
 is Goldie-ss-lifting also if  $%=

$
  is the direct summand of  +

$
  for each direct summand	𝐾 of  

𝐻. 

Proof. Let  1
$
≤ +

$
  . Since 𝐻 is a Goldie-ss-lifting module, 𝐻 has direct summand 𝐾 with 𝑁𝛽##∗ 𝐾. 

Since 𝑁𝛽##∗ 𝐾, then 1%=
=

⊆ 𝑆𝑜𝑐# H
+
=
I and 1%=

1
⊆ 𝑆𝑜𝑐# H

+
1
I. From here,  

$
%
&
%

≅ +
1

 ,
&
%%

'#%
%

&
%

=
&#'#%

%
&
%

=
&#'
% %%%
&
%

=
&#'
%
&
%

≅ 1%=
1

  and  
&
%%

'#%
%

'#%
%

=
&#'#%

%
'#%
%

=
&#'
% %%%
'#%
%

=
&#'
%

'#%
%

≅ 1%=
$%=

≅
&#'
'

%#'
'

 . Since 1%=
1

 is small in +
1

  

and 1%=
1

 is semisimple, it is  
&
%%

'#%
%

&
%

⊆ 𝑆𝑜𝑐# {
$
%
&
%

|.  Then 1%=
=

≪ +
=

  and  1%=
=

  are  semisimple, the factor 

modules of   1%=
=

 ,  
&
%%

'#%
%

%#'
%

≪
$
%

%#'
%

  and 
&
%%

'#%
%

%#'
%

. Thus 
&
%%

'#%
%

&
%

⊆ 𝑆𝑜𝑐# {
$
%
&
%

| and 
&
%%

'#%
%

'#%
%

⊆ 𝑆𝑜𝑐# {
$
%

'#%
%

| 

are according to the hypothesis, +
$

 is a Goldie-ss-lifting module. 

 

Corollary 3.13. Given a Goldie-ss-lifting module 𝐻. 

(i) If 𝐻 is distributive, the factor module  +
$

 is Goldie-ss-lifting module for each 𝑋 ⊆ 𝐻. 

(ii) Let 𝑋 ⊆ 𝐻 and each element 𝑒 = 𝑒4 ∈ 𝐸𝑛𝑑(𝑀) satisfies the condition 𝑒(𝑋) ⊆ 𝑋. Then the factor 
module +

$
 is Goldie-ss-lifting. 

Proof. (i) Since 𝐻  is a Goldie-ss-lifting module, 𝑀 has a direct summand 𝐷 with	𝑋𝛽##∗ 𝐷. Since 
𝑋𝛽##∗ 𝐷, it is $%.

.
⊆ 𝑆𝑜𝑐# H

+
.
I and $%.

$
⊆ 𝑆𝑜𝑐# H

+
$
I. Here there is a submodule 𝐷> ⊆ 𝐻 with 𝐻 =

𝐷⨁𝐷>. Then the equation +
$
= .%$

$
+ .(%$

$
 can be written. Since 𝑀 is distributive, then 𝑋 = 𝑋 +

(𝐷 ∩ 𝐷>) = (𝑋 + 𝐷) ∩ (𝑋 + 𝐷>) is obtained. So the direct sum (.%$)
$

⨁ (.(%$)
$

 is +
$

. For each direct 

summand 𝐷 of 𝐻,	.%$
$

  is a direct summand of  +
$

.  By Theorem 3.12, the factor module  +
$

  is Goldie-
ss-lifting. 

(ii) Let  𝐷 be an arbitrary direct summand of  𝐻. Let’s consider the canonical projection  𝑒: 𝐻 → 𝐷. 
In this case  𝑒4 = 𝑒 ∈ 𝐸𝑛𝑑(𝐻). Since 𝑒(𝑋) ⊆ 𝑋 in the hypothesis, 𝑒(𝑋) = 𝑋 ∩ 𝐷 is satisfies. Also, 
since 𝐷 is a direct summand of	𝐻, we can write  𝐻 = 𝐷⨁𝐷> for some 𝐷> ⊆ 𝐻. That is, the equation 
𝑋 = (𝑋 ∩ 𝐷)⨁(𝑋 ∩ 𝐷>) can be written. Then we have  .%$

$
= ?.⨁($∩.()B

$
  and  (.

(%$)
$

= ?.(⨁($∩.)B
$
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are obtained. Therefore, +
$
= (.%$)

$
+ (.(%$)

$
= ?.⨁($∩.()B

$
+ (.(%$)

$
 is found. It can be shown from 

}𝐷⨁(𝑋 ∩ 𝐷>)~ ∩ (	𝐷> + 𝑋) = 𝑋 that +
$
= ?.⨁($∩.()B

$
⨁ (.(%$)

$
 . By Theorem3.12 the factor module  +

$
 

is Goldie-ss-lifting, as required. 

 

Proposition 3.14 Let 𝐻	be a Goldie-ss-lifting module. Then 𝐻 is a Goldie*-lifting module. If 
𝑆𝑜𝑐#(𝐻) ≪ 𝐻, then the converse holds.  

Proof.  Let 𝐻 be a Goldie-ss-lifting module. 𝐻 = 𝐷⨁𝐷> so that (𝑁 + 𝐷)/𝑁	 ⊆ 𝑆𝑜𝑐#(𝐻/𝑁)    and 
(𝑁 + 𝐷)/𝐷	 ⊆ 𝑆𝑜𝑐#(𝐻/𝑑) for any submodule 𝑁 of 𝐻. Therefore (𝑁 + 𝐷)/𝑁	 ≪ 𝐻/𝑁	  and (𝑁 +
𝐷)/𝐷	 ≪ 𝐻/𝐷. So 𝐻 is a Goldie*-lifting module. Conversely, let 𝑁 ⊆ 𝐻. By assumption, 𝐻 has a 
decomposition 𝐻 = 𝐷⨁𝐷> so that (𝑁 + 𝐷)/𝑁	 ≪ 𝐻/𝑁   and                    (𝑁 + 𝐷)/𝐷	 ≪ 𝐻/𝐷. Then  
𝐻 = 𝐷 + 𝐷> = 𝑁 + 𝐷> and (𝑁 + 𝐷)/𝐷 ⊆ (𝑆𝑜𝑐#(𝐻) + 𝐷)/𝐷		. Let 

 be isomorphisms and 
 be an epimorphism. Set . By a similar argument to (Gömleksiz & 

Nişancı Türkmen, 2023) in Proposition 2.6, Since (𝑁 + 𝐷)/𝐷 ⊆
(𝑆𝑜𝑐#(𝐻) + 𝐷)/𝐷	, we have (𝑁 + 𝐷)/𝑁 ⊆ ℎ(𝑆𝑜𝑐#(𝐻) + 𝐷)/𝑁. Hence, 𝐻 is a Goldie-ss-lifting 
module.  
 

4. CONCLUSION 
In this paper, we have considered the Goldie-ss-lifting modules as a specialized notion of Goldie*-
lifting modules. In particular, it is obtained fundamental module structure theorems by the help of a 
relation 𝛽##∗ 	that is more special than 𝛽∗ .         
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