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ABSTRACT 

In this study, a hybrid reactor with fission fusion reaction was modeled. As a fluid in design; 10% 

ThC2 + 0.1-1% AmF3 + 89.9-89% Li20Sn80 and 10% ThC2 + 0.1-1% NpF4 + 89.9-89% Li20Sn80 

molten salt was used. In the first liquid wall, second liquid wall and shield regions of the reactor, 

the fissile fuel production was calculated using the MCNPX-2.7.0. ENDF/B-VII.0 nuclear reaction 

cross section library was used for numerical calculations. 
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INTRODUCTION 

About 11% of the world's electricity is produced by existing reactors in the world. In order to obtain 

the energy provided, approximately 8500 tons of fuel is consumed and 23 tons/MW of radioactive 

waste is generated, annually. The storage of such a large amount of radioactive waste and their long 

half-life is an important problem for human and environmental health. Therefore, a hybrid reactor 

has been designed to obtain energy, to process the trans-uranium elements in the fuel used and to 

reuse them as fuel, and to convert long-lived fission products into harmless forms. Hybrid reactor is 

a subcritical safe system in which fusion-fission reactions occur together (Günay, 2015a; Düz, 

2021; Düz and İnal, 2020;IAEA, 2009; Doligez et al., 2017; Günay, 2014a; Günay, 2014b). 

The hybrid reactor uses mostly abundant deuterium-tritium as fuel. As a result of the fusion reaction 

of this fuel, 3.5 MeV Helium and 14.1 MeV fusion neutrons are released. Fusion neutrons collide 

with the liquid wall. Thus, with the hybrid reactor, both energy, fuel and short-lived wastes are 

generated (Şahin, 2007; Nygren et al., 2004; Hill et al., 2009; Günay, 2013; Günay, 2014c; Günay 

and Bardakçı, 2017). 

The reason for using carbon (graphite) in fuels (ThC2) in this study; because it has reflective 

properties. The particles coming out of the plasma make an inelastic collision with the carbon and 

return to the core region. Thus, it reduces neutron leakage and increases neutron efficiency. Carbon; 

it is an element that has a high retardation rate, is resistant to radiation, has a low melting 

temperature, a high boiling temperature, and does not cause corrosion on the structural material. 

In addition to energy production, nuclear reactors used today also generate nuclear (U, Pu, Am, Cm, 

Np). Minor actinides (MAs) are long half-life, radioactive and good energy sources. Because of 

these properties, consumption of MAs as fuel is important for the environment and human health. 

MAs are in mixture oxide (MOX) or fluoride compositions (OECD-NEA, 2013; IAEA, 2009; Lu et 

al., 2013; OECD-NEA, 2015; Van Rooijen et al., 2015; Dolan, 2017; Vigier et al., 2018). In this 

study, we used the minor actinidine fluoride components AmF3, CmF3 and NpF4 as fuel in the 

designed reactor to reduce the amount of MA. AmF3, CmF3 and NpF4; fast neutrons can undergo 

fission. Since fluorine (F) is also a reflector, it collides with the particles coming out of the plasma. 

The aim of this study is to examine the fissile fuel production in relevant regions with mixture of 

selected fluids (ThC2, AmF3, CmF3, NpF4 and Li20Sn80) in different ratios in the designed hybrid 
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reactor. Three-dimensional design and calculations by using MCNPX-2.7.0 were made for 

temperature at 300 oK. 

 

MATERIALS and METHODS  

In this study was used APEX fusion technology as a hybrid reactor design. The liquid wall has been 

used to regulate the performance of the APEX hybrid reactor, energy transfer and tritium 

production (Christofilos, 1989; Günay, 2015b; Abdou et al., 2001; Abdou, 1999; Ünalan, 1998; 

Abdou, 2004; Şarer et al., 2007; Moir, 1997; Günay, 2014d). The large radius of hybrid reactor is 

552 cm. The reactor is shaped like a torus and shown in Figure 1.  

 

Figure 1. Representation of the APEX hybrid reactor used in calculations. 

 

Li20Sn80 liquid layer; it is preferred because it significantly reduces the parameters that damage 

structural materials such as radiation and activation (Abdou et al., 1999; Abdou et al., 2005; Günay 

et al., 2011; Youssef and Abdou, 2000; Ying et al., 1999; Youssef et al., 2002; Günay, 2016). 

Beryllium was used as reflector. 

MCNPX; it is a combination of MCNP and LAHET codes (Chadwick et al., 2006; Pelowitz, 2011). 

The latest version, MCNPX-2.7.0, was used in the study.  

 

FISSILE FUEL PRODUCTION  

The fuel material used for power generation in conventional nuclear reactors is fissile fuels. Fissile 

fuels are nuclei that can perform fission reactions with low-energy neutrons. These are 235U, 233U, 
239Pu. The isotopes of  235U, 233U, 239Pu, which can fission with neutrons at low energies, are 

produced from 232Th and 238U. The 235U isotope, which is used as a fuel in fission nuclear reactors, 

produces energy and new neutrons by generating high fission with thermal neutrons. Existing 

fission reactors use only a small fraction of uranium, as this fuel is very scarce in nature. The 238U 

isotope, which is found in large quantities in nature, is converted to 239Pu with a very low yield by 

the (n,γ) reaction. Depending on the type of reactor and its operation, some of the plutonium formed 

is burned and some is stored (Günay et al., 2011; Korkut and Hançerlioğulları, 2012; Şahin and 

Übeyli, 2005). 233U fissile fuel is produced by 232Th(n,γ) as the fuel raw material in the reactor. 

 

Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences 
International Indexed and Refereed 

ISSN 2667-6702

www.euroasiajournal.org 2 Volume (9), Issue (20), Year (2022)

______________________________________________________________________

______________________________________________________________________



RESULTS 

In the study, 232Th fertili was used for the production of fissile fuel. The (n,γ) reaction is required 

for fissile fuel production from 232Th fertil. In this study; the fissile fuel production was calculated. 

Table 1 shows the production of 233U fissile fuel as a result of the (n,γ) reactions of 232Th fertil used 

in the designed reactor. 

Table 1. Fissile fuel production (kg/year) obtained by using fluids in the relevant parts of the 

reactor. 

Heavy Metal Ratio AmF3 CmF3 NpF4 

%0.1 3.99.10-04 1.69.10-03 4.28.10-04 

%0.5 6.05.10-04 7.12.10-03 7.29.10-04 

%1 8.64.10-04 1.39.10-02 1.15.10-03 

It has been observed that the ratio of fissile fuel produced increases when the minor actinide ratio is 

increased and the molten salt ratio is decreased in the selected fluids. As a result, it was observed 

that the greatest increase in 233U fissile fuel production was in 10% ThC2+ 1% CmF3+ 89% Li20Sn80 

fluid. 

 

DISCUSSION and CONCLUSIONS  

In this study, 233U fissile fuel was obtained in the first liquid wall, second liquid wall and armor 

regions where 232Th fertil was found. In selected fluids in the study, it was observed that the ratio of 

fissile fuel produced increased as the minor actinide fluoride ratio increased. The best increase was 

observed in CmF3. 
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