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ABSTRACT 
Depending on the development of the industry, the problem of clean water caused by wastewater and 
other environmental problems have emerged. Today, industrialization has increased and 
environmental pollution has become an important problem. Wastes released into the aquatic medium 
from various industrial sources disrupt the natural stabilize and adversely affect living things and the 
ecosystem we live on. Therefore, the removal and treatment of dye wastes in river and lake waters 
has started to be a important environmental problem. Classical treatment methods are used for the 
removal of anionic and cationic dye wastes. However, classical wastewater treatment processes are 
not a good approach in terms of energy efficiency in the removal of dye waste. Sono-photocatalytic 
process is one of the preferred alternative processes for the removal of anionic and cationic dyes from 
wastewater. Sono-photocatalytic oxidation process is the simultaneous use of ultrasound waves and 
ultraviolet radiation with catalyst support as a result of the synergistic effect. The sono-photocatalytic 
treatment process greatly increases the efficiency of advanced oxidation processes and chemical 
reaction. The effect of the sono-photocatalytic process is greater than the combined effects of the two 
processes (sonocatalytic and photocatalytic process). 
Keywords: Anionic and Cationic Dyes, Ultrasonic Irradiation, UV Irradiation, Hydroxyl Radical, 
Sono-photocatalytic Oxidation. 

 
ÖZET 
Sanayinin gelişmesine bağlı olarak atık suların neden olduğu temiz su sorunu ve diğer çevre sorunları 
ortaya çıkmıştır. Günümüzde sanayileşme artmış ve çevre kirliliği önemli bir sorun haline gelmiştir. 
Çeşitli endüstriyel kaynaklardan su ortamına salınan atıklar, doğal dengeyi bozarak canlıları ve 
üzerinde yaşadığımız ekosistemi olumsuz etkilemektedir. Bundan dolayı, nehir ve göl sularındaki 
boya atıklarının uzaklaştırılması ve arıtılması önemli bir çevre sorunu olmaya başlamıştır. Anyonik 
ve katyonik boya atıkların gideriminde geleneksel arıtım yöntemleri kullanılmaktadır. Ancak boya 
atıklarının giderilmesinde klasik atıksu arıtma prosesleri enerji verimliliği açısından iyi bir yaklaşım 
değildir. Sono-fotokatalitik proses, anyonik ve katyonik boyaların atık sudan uzaklaştırılması için 
tercih edilen alternatif proseslerden biridir. Sono-fotokatalitik oksidasyon işlemi, sinerjik etki 
sonucunda ultrasonik ses dalgaları ve ultraviyole radyasyonun katalizör desteği ile birlikte 
kullanılmasıdır. Sono-fotokatalitik arıtma prosesi, ileri oksidasyon proseslerinin ve kimyasal 
reaksiyonun verimliliğini büyük ölçüde artırır. Sono-fotokatalitik prosesin etkisi, iki prosesin 
(sonokatalitik ve fotokatalitik proses) toplam etkilerinden daha büyüktür. 
Anahtar Kelimeler: Anyonik ve Katyonik Boyalar, Ultrasonik Işınlama, UV Işınlama, Hidroksil 
Radikali, Sono-fotokatalitik Oksidasyon. 

 
 
 

Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences 
International Indexed and Refereed 

ISSN 2667-6702

www.euroasiajournal.org 43 Volume (8), Issue (19), Year (2021)

______________________________________________________________________

______________________________________________________________________

http://orcid.org/0000-0002-8520-6563


1. INTRODUCTION 
Water pollution is generally defined as the deterioration of the physical chemical and biological 
properties and appearance of water in the medium. Organic substances that cause water pollution are 
dyes, drugs, detergents and pesticide waste (Abbassi et al., 2013). Today, the textile dye industry is 
one of the industrial sectors that use the most water. The textile industry produces wastewater 
containing dyestuffs and non-degradable substances (Bizani et al., 2006). Waste water produced by 
the textile dye industry creates hazardous environmental problems. Despite the use of modern 
technologies, the textile dye industry has the highest share among the industries that consume the 
most water and produces excessive amounts of wastewater (Kansal et al., 2009). Some wastewaters 
contain non-biodegradable dyestuffs. Industries that produce such wastewater include the textile, 
food and dye industries (Sidiras et al., 2011). The dyestuff wastes have undesirable effects in the 
environment where they are discharged. Due to their complex aromatic structure, they cause toxic 
and carcinogenic effects (Polat, 2010). In receiving waters, colored wastewaters prevent the transition 
of sunlight, harmful the living environment and also cause odor and visual pollution (Rida et al., 
2013). 
Wastewaters containing dyestuffs cause hazardous ecological problems in receiving environments 
even at very low concentrations. For this reason, in order to prevent the negative effects of dyestuffs 
on the environment, they must be treatment from wastewater before they are discharged into receiving 
environments (Arenas et al., 2017). Physical and chemical methods used for dye removal are 
electrochemical methods, filtration, flocculation, coagulation, adsorption, chemical oxidation. These 
methods have low removal efficiency in the degradation of dye wastes (Walker et al., 2003). In recent 
years, sono-photocatalytic (US/UV/Catalytic) process has become popular among advanced 
oxidation processes for the removal of dyes from wastewater. This process produces more hydroxyl 
radicals in the solution medium due to the synergistic properties of both the sonocatalytic effect and 
the photocatalytic effect (Danwittayakul et al., 2013). Photocatalytic oxidation is preferred because 
of it is effective advantages over other processes, high oxidation ability, applicable technology for 
removing dye wastewater and low cost parameters (Beata, 2017). The sono-photocatalysis treatment 
process which is preferred by researchers today, is the process with the highest removal efficiency of 
dye wastes among advanced oxidation processes. This hybrid process (sonolytic and photolytic) 
decrease the need to use physical conditions during oxidation (Lianga et al., 2017). The sono-
photocatalytic oxidation process contributes to the efficiency of the degradation reactions of dye 
wastes by solving the problems related to the effect and surface area of the catalyst support compared 
to individual processes such as sonocatalytic and photocatalytic (Anju et al., 2012; Lianga et al., 
2017). 

1.1.  Anionic and Cationic Dye Wastes 
Dye molecules consist of two important components, auxochromes and chromophores which are 
responsible for color production. Anionic and cationic dyes can be classified according to their 
solubility, chemical structure and application areas due to their structural differences (Salleh et al., 
2011). The dyes used in the textile industry are acid dyes, basic dyes, direct dyes, disperse dyes, 
reactive dyes and sulfur dyes (Paz et al., 2017). Dyestuffs connect to the surface on which they will 
give color by different physical interactions. These bonds; hydrogen bonds, Van der Waals and 
coordination bonds. In other cases, they interaction chemicaly with the covalent bonds (Marin et al., 
2019). 
Dyes are classified as cationic (basic), anionic (acid, direct and reactive) and non-ionic dyes (disperse) 
according to the application method (Li et al., 2011). Cationic dyes are substances that dissolve in 
water and give off positively charged ions (cations) to water when dissolved. The cationic property 
is found in the various types of dyes, especially the cationic azo dyes anthraquinone and solvent dyes 
(Khouni et al., 2020). Cationic dyes in acrylic, nylon and silk dyeing widely preferred. In addition to 
the toxic effect of this dye group they cause allergic derm inflammation, mutation and cancer 
(Ratnamala et al., 2012). Anionic dyes are substances that give off negatively charged ions when 
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dissolved in water. The main classes of these dyes are triphenylmethane, nitro and azo dyes (Yagub 
et al., 2014). Anionic dyes are used in the polyamide, modified acrylic and polypropylene fibers. As 
they are organic sulfonic acids they cause harmful effects on humans (Ngulube et al., 2017). Non-
ionic (disperse) dyes are insoluble in water. The basis of disperse dyes are benzodifuranone, nitro, 
styryl and azo dyes. Disperse dyes are used on the cellulose acetate, acrylic and cellulose fibers 
(Katheresan et al., 2018). 
The textile industry is an effective component that causes hazardous threats to the environment and 
ecosystem and affects human health due to the discharge of wastewater containing various dye types 
into natural water resources considered as water pollution (Wong et al., 2019). Dye wastes decrease 
the transmission of sunlight to water and can reach humans through the food chain by accumulating 
in the aquatic plants and animals (Solis et al., 2012). In addition, dye wastes can cause functional 
damage to the kidney, liver, brain and central neural system of people by causing toxic and 
carcinogenic effects on the aquatic organisms (Singh et al., 2017). 

 
2. METHODS 
2.1. Ultrasonic Irradiation (US) 
Ultrasonic irradiation is expressed as a sound wave with a frequency higher than the human hearing 
frequency. It is known to have a frequency ranging from 15 kHz to 500 MHz (Gholami et al., 2020). 
Acoustic cavitation is vibration waves that cause chemical and mechanical effects to accelerate the 
removal of dye wastes in the solution. Acoustic cavitation is formed during the vibration cycle. This 
process begins when the effect of negative pressure degradation up the water molecules (Adewu-Yi, 
2005; Mahvi, 2009). The vibrations of acoustic cavitation result in the nucleation, growth and violent 
collapse as a result of chain reactions of gas filled microbubbles produced during compression cycles 
in solution (Pang et al., 2011). 
Both the permanent and temporary bubbles are formed during ultrasonic cavitation. Both of these 
bubbles contribute to the chemical effects of ultrasonic cavitation (Kim et al., 2018). The dyestuffs 
in wastewaters can be oxidized by the energy and radicals released during the formation and 
destruction of bubbles caused by cavitation (Zhang et al., 2018). The reactions that take place during 
acoustic cavitation take place inside the bubble, at the bubble and solution interface and in the aqueous 
solution (Zhu et al., 2013). At high temperatures and with the help of oxygen dissolved in the aqueous 
solution dye molecules can be degradation (Song et al., 2012). Although molecules with high 
volatility are degradation directly in the bubble by cavitation, molecules with low volatility are not 
degradation in the bubble. These molecules are indirectly degradation as a result of their reaction with 
the radicals formed during cavitation (Yin et al 2011). 

2.2. Ultraviolet Irradiation (UV) 
Ultraviolet (UV) irradiation is a process that has a important effect on the treatment of dyes from 
wastewater. This process involves using light of the appropriate wavelength and transmits photons of 
light to ensure the removal of unwanted dye waste (Santos et al., 2016). The wavelength range of the 
UV spectrum is generally considered to be between 100 and 400 nm. Ultraviolet irradiation is 
generally examined in 3 groups. These groups are UV-A (315-380 nm), UV-B (280-315 nm) and 
UV-C (200-280 nm) irradiation (Kıranşan et al., 2015). Processes involving the interaction between 
dye wastes that cause chemical reactions by interacting with UV light are called photochemical 
reactions (Rong et al., 2015). Photochemical oxidation has approved to be an effective removal 
method in wastewater treatment systems, especially for the treatment of the complex molecules and 
dye wastes (Yang et al., 2016). Photochemical UV irradiation is divided into two different reactions, 
direct and indirect irradiation. Direct irradiation includes photon absorption by dye waste previous to 
any photochemical reaction (Nasirian et al., 2018). 
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3. RESULTS AND DISCUSSION 
3.1. Sonocatalytic Oxidation Process  
The realization of chemical reactions with the help of cavitation bubbles of the ultrasonic irradiation 
is named sonochemistry. Pressure and temperature are extremely high during ultrasonic cavitation 
reactions. This pressure and temperature can reach 1000 atm and 5000 K (Mason et al., 2011). As a 
result of events occurring under high temperature and pressure, water molecules and oxygen 
transform into effective radical species such as the hydrogen and hydroxyl radicals (Balachandran et 
al., 2016). Pyrolysis and radical reactions that occur as a result of the acoustic cavitation vibrations 
increase the efficiency of sonochemical degradation (Eqs. (1-5)) (Yashas et al., 2020). 

H2O + ))) → •OH + •H                          (1) 
O2 + ))) → 2 •O                                     (2) 
•OH + •OH → H2O + O•                      (3) 
•OH + H2O → H2O2 + H•                     (4) 
H• + •OH → H2O                                  (5) 

The sonochemical reaction mechanism of dye wastes is mainly carried out by thermal decomposition 
in the cavitation bubble and the formation of free radical reaction in the solution (Yap et al., 2019). 
There are many factors that affect the sonocatalytic cavitation and therefore the amount of reagents 
from ultrasound. Sonocatalytic reactions are affected by solution temperature, dissolved gases, 
ambient pressure and frequency of ultrasonic sound (Soltani et al., 2019). Reaction temperature is 
another parameter that affects ultrasonic cavitation. The effect of sonochemical reaction temperature 
on ultrasonic cavitation causes more bubbles to form as a result of speedy evaporation of the solvent 
with the increase in the vapor pressure (Diehl et al., 2018). It has been reported that increasing the 
temperature decreases the sonochemical reaction effect (Jun et al., 2020). The schematic 
representation of the sonocatalytic oxidation process is shown in Fig. 1. 
 

 
Figure 1. Schematic representation of the sonocatalytic oxidation process (Zhang et al., 2019). 

It is known that the removal and degradation efficiency can be increased by adding different catalysts 
to the sonolytic oxidation process (Kim et al., 2018). The addition of an appropriate amount of catalyst 
(heterogeneous catalyst or hybrid catalyst) provides the formation of weak regions in aqueous 
solution, especially at the liquid-solid interface for nucleation of cavitation bubbles (Jorfi et al., 2018). 
These regions increase the rate of formation of bubbles, thus increasing the amount of radicals formed 
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in the solution and increasing the removal and degradation efficiency of dye wastes (Khataee et al., 
2015). 

3.2. Photocatalytic Oxidation Process  
Dye molecules (Dye) excited by photons of light are converted to the higher potential energy excited 
to the state (Dye*) by direct irradiation. Then the excited dye molecules can release the absorbed 
energy and return to the ground state or transform into intermediates by photochemical reactions 
(Soutsas et al., 2010). Photochemical oxidation reactions cause dye molecules to return into basic and 
harmless products such as CO2 and H2O (Eqs. (6-9)) (Mukherjee et al., 2017). 

Dye + UV Light (A-B-C) → Dye*                               (6) 
Dye*  → Dye                                                                (7) 
Dye * → Intermediates (Radicals)                                (8) 
Intermediates → Products + CO2 + H2O                       (9) 

When a photocatalyst interaction with light of a certain wavelength, the energy of the photons 
transfers electrons from the valence band to the conduction band (Barzegar et al., 2019). In this 
process, an energy band gap (h+) is formed in the valence band. This difference in load is one of the 
first important steps of the photocatalytic reaction. The electron double and holes formed come back 
together and give off the energy as heat to the environment (Eqs. (10-13)) (Khataee et al., 2017). 

Photocatalyst → e-CB + h+
VB                     (10) 

 e-CB + h+
VB → Isı                                       (11) 

h+
VB + H2O → OH• + H+                           (12) 

h+
VB + OH- → OH•                                     (13) 

As a result of these reactions, the risk of electron/hole double recombining and lose their activity is 
eliminated. As a result of photocatalytic and photochemical reactions on the catalyst surface, reactive 
hydroxyl radicals (OH•) are formed (Eqs. (12-13)) (Khataee et al., 2017). The schematic 
representation of the photocatalytic oxidation process is shown in Fig. 2. 

 
Figure 2. Schematic representation of the photocatalytic oxidation process  

(Roongraung et al., 2020) 
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As a result of photocatalytic reactions, superoxide ion radical reactions with water and reactive anions 
such as O2

•-, HO2
•, HO2

- are formed in the solution ambient (Eqs. (14-16))  (Sharma et al., 2018). 
 

H+ + O2•- → HO2
•                                       (14) 

HO2
• → H2O2 + O2                                     (15) 

HO2
• + O2•- → O2 + HO2

-                           (16) 

 
3.3. Sono-Photocatalytic Oxidation Process Applications of Dye Wastes Removal 
The sono-photocatalytic oxidation process is a hybrid sonolytic and photolytic process with catalyst 
support to increase the removal efficiency of dye wastes (Dinesh et al., 2016). The primary purpose 
of advanced oxidation processes is to decrease the treatment cost of the industrial wastes and to make 
dye wastes more harmless (Bahena et al., 2008). In order to make sono-photocatalytic oxidation more 
effective, there are three reasons that affect the mass transfer of dye wastes in the liquid phase. These 
reasons are the increase of hydroxyl radical (⋅OH) production, the formation of cavitation bubbles 
with the support of catalyst particles and catalyst surface (Hayati et al., 2020). The reaction rate is 
increased by the combination of the double effect of these two radiations (UV and ultrasound). 
Hydrogen peroxide is formed by the combining sonolysis with photocatalytic oxidation (Eqs. (17-
20)) (Karim and Shriwastav, 2020). 

 
H2O →)))) → OH• + H•          (17) 
H2O2 +  H• → H2O + •OH       (18) 
H2O2 + hv → 2 •OH                (19) 

H2O2 + O2
•- → •OH + OH- + O2     (20) 

In the hybrid sono-photocatalytic reaction, the adsorption of dye contaminants to specific centers on 
the surface happened and the step that controls the reaction rate will be an important increase in the 
number of ultrasound active centers (Hapeshi et al., 2013). The schematic representation of the sono-
photocatalytic oxidation process is shown in Fig. 3. 

 
Figure 3. Schematic representation of the sono-photocatalytic oxidation process (Jorfi et al., 2018). 
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At the same time, under the turbulent conditions formed, the catalyst depending on the effect, suitable 
surface areas are created and increases suitable to the diffusion rates of dye wastes are observed (Xu 
et al., 2013). Applications of removal of the different dye pollutants by using sono-photocatalytic 
oxidation processes are given in Table 1. 

Table 1. Applications of removal of the different dye pollutants by using sono-photocatalytic 
oxidation processes. 

Hybrid Process Pollutants of Dye Catalyst Removal 
Efficiency 

References 

Sono-photocatalytic 
Oxidation (US/UV) 

Direct Blue 71  
(DB-71) 

ZnO (Zinc Oxide) ~100% (Ertugay and Acar, 
2014) 

Sono-photocatalytic 
Oxidation (US/UV) 

Methylene Blue 
(MB) 

NiMoO4 Nanosheets 98.00% (Dhanasekar et al., 
2017) 

Sono-photocatalytic 
Oxidation (US/UV) 

Reactive Black 5 
(RB-5) 

TiO2 ~99.00% (Kritikos et al., 
2007) 

Sono-photocatalytic 
Oxidation (US/UV) 

Reactive Blue 19 
(RB-19) 

TiO2 55.00% (Siddique et al., 
2014) 

Sono-photocatalytic 
Oxidation (US/UV) 

Basic Blue 9  
(BB-9) 

TiO2 80.00% (Gonzalez and 
Martínez, 2008) 

Sono-photocatalytic 
Oxidation (US/UV) 

Acid Yellow 23 
(AY-23) 

ZnO, Fe/ZnO 
Composite. 

98.00% (Dinesh et al., 
2016) 

Sono-photocatalytic 
Oxidation (US/UV) 

Acid Blue 113 
(AB-113) 

ZnO/Persulfate 98.70% (Asgari et al., 
2020) 

Sono-photocatalytic 
Oxidation (US/UV) 

Acid Red 88 
(AR-88) 

TiO2 45.00% (Madhavan et al., 
2010) 

Sono-photocatalytic 
Oxidation (US/UV) 

Brilliant Green ZnO and CuO 94.80% (Gole et al., 2017) 

Sono-photocatalytic 
Oxidation (US/UV) 

Methyl Orange 
(Me-O) 

TiO2 91.50% (Cheng et al., 
2012) 

Sono-photocatalytic 
Oxidation (US/UV) 

Rhodamine 6G 
(Rh-6G) 

CuO/TiO2 63.30% (Bokhale et al., 
2014) 

 
4. CONCLUSION 
As a result, the presence of a small amount of dye wastes in the water causes a toxic effect on aquatic 
organisms. It is very important to control the color removal and water quality in the wastewater where 
dye wastes can be seen at a high rate. Even a very small dye concentration, which can add important 
color to drinking water, is not suitable for human consumption. Removal of dyes from wastewater is 
an important environmental activity, not only in terms of the environment but also in terms of human 
health. Since the removal of dyes from wastewater is seen as an environmental problem and textile 
wastewater needs to be treatment, there is a need for hybrid methods that can effectively remove these 
dye wastes.  
As a result of the hybrid effect of ultraviolet irradiation and ultrasonic irradiation, the sono-
photocatalytic process is a method preferred by researchers over other advanced oxidation processes 
for removing dyes from wastewater. The sono-photocatalytic process can be designed and 
implemented as a pre-treatment step due to non-biodegradable and non-selective reactivity of dye 
residues. The combination of heterogeneous sonocatalytic and photocatalytic is assumed to be one of 
the most promising processes for completing the mineralization processes of dye wastes with high 
efficiency. 
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