Hızlı Erişim


Bu Dergi DOI ve Crosscheck üyesidir


Abstract


HYPERPARAMETER OPTIMIZATION OF DATA MINING ALGORITHMS ON CAR EVALUATION DATASET

Data mining is the process of obtaining valuable data from large-scale data. Several algorithms are used for revealing the relationships between data and making accurate predictions. There are several cases that may affect the performance of these algorithms. One of these is choosing most suitable hyper parameters. To optimize these parameters provide us to improve algorithm results. In our project, we optimized hyper parameters of different data mining algorithms on car evaluation dataset for improving classification accuracy. Hyper parameter optimization was performed on support vector machines, k-nearest neighbor, random forest, multi-layer perceptron and gradient boosting algorithms. Results of hyper parameter values and default parameter values were compared. The calculations show that gradient boosting with hyper parameter optimization method produces best prediction of the car evaluation by 99.42%.



Keywords
Data Mining, Gradient Boosting, Classification



Kaynakça

Gelişmiş Arama


Duyurular

    ***********************

    DEĞERLİ BİLİM 

    İNSANLARI!

    mail mail mail mail mail

    Dergimizin Mart sayısı 

    (25.03.2021)

    yayınlanmıştır.

    mail mail mail mail mail

    DEĞERLİ BİLİM 

    İNSANLARI!

    mail mail mail mail mail

    Dergimizin

    Mayıs Sayısı 

    İçin Makalenizi  

    Sisteme Yükleyebilirsiniz.

    mail mail mail mail mail

     



Adres :Göztepe Mah., Beykoz, İstanbul/TURKEY
Telefon :+90 555 005 92 85 Faks :+90 216 606 32 75
Eposta :info@euroasiajournal.org

Web Yazılım & Programlama Han Yazılım Bilişim Hizmetleri